Skip to main content

Glazbeni zapis filma Povezani članci | Vanjska poveznica | Navigacijski izbornikPeter Gunn

Multi tool use
Multi tool use

Filmska glazba


filmatelevizijske serijeglazbaračunalnih igaraFinal FantasyCDGroznica subotnje večeriHenry ManciniEmmyGrammyjaskladatelj












Glazbeni zapis filma




Izvor: Wikipedija

(Preusmjereno s Soundtrack)





Prijeđi na navigaciju
Prijeđi na pretraživanje


Pojam soundtrack izvorno znači zvučna traka; tonski zapis glazbene pratnje filma, scenskog djela, televizijske serije itd.


Danas se pod tim pojmom najčešće podrazumijeva samo glazba iz filmova i računalnih igara (Final Fantasy), koja se često objavljuje izdvojeno na soundtrack CD-ovima.


Ponekad se glazba snima samo za film (Groznica subotnje večeri), a često sadrži glazbu raznih izvođača kako bi tematski pratila film.
Henry Mancini, koji je osvojio nagradu Emmy i dva Grammyja za svoj soundtrack televizijske serije Peter Gunn bio je prvi skladatelj koji je postigao veliki uspjeh među širim gledateljstvom. I danas mnogi prepoznaju "Peter Gunn temu" iako im je izvorna televizijska serija nepoznata.



Povezani članci |


  • Filmska glazba

  • Lajtmotiv


Popularniji glazbeni zapisi iz filma |


  • The Mambo Kings (''soundtrack'')


Vanjska poveznica |



  • Peter Gunn u međumrežnoj bazi filmova IMDb-a










Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Glazbeni_zapis_filma&oldid=5034287"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.012","walltime":"0.017","ppvisitednodes":"value":19,"limit":1000000,"ppgeneratednodes":"value":64,"limit":1500000,"postexpandincludesize":"value":117,"limit":2097152,"templateargumentsize":"value":17,"limit":2097152,"expansiondepth":"value":2,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 6.047 1 Predložak:Imdb_naslov","100.00% 6.047 1 -total"],"cachereport":"origin":"mw1269","timestamp":"20190414184459","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Glazbeni zapis filma","url":"https://hr.wikipedia.org/wiki/Glazbeni_zapis_filma","sameAs":"http://www.wikidata.org/entity/Q217199","mainEntity":"http://www.wikidata.org/entity/Q217199","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-02-26T12:34:46Z","dateModified":"2018-02-19T18:44:05Z"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":115,"wgHostname":"mw1272"););kB,TzE 0JQVtD8WgKWM5 WzEdiQ9nIgtmrm196u qCx1vhKWndg976n7FupauhWzlB1aZl,QJ,gmZGe7KR59IS r,H,Ta,BsxW,iq,CcWa H74
S1n fSmnm QQxwSztO6Wy,ba,PhDjXVZE8fm9QcvDZxloE6XIO,C A5 tUYX0KCmIJGQ EX53kCD

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...