Skip to main content

7. travnja Sadržaj Događaji Rođenja 7. travnja Smrti 7. travnjaBlagdani i spomendaniImendaniNavigacijski izborniku

Dani u travnju


gregorijanskom kalendaruprijestupnoj godini












7. travnja




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje


7. travnja (7.4.) 97. je dan godine po gregorijanskom kalendaru (98. u prijestupnoj godini).
Do kraja godine ima još 268 dana.




Sadržaj





  • 1 Događaji


  • 2 Rođenja 7. travnja


  • 3 Smrti 7. travnja


  • 4 Blagdani i spomendani


  • 5 Imendani




Događaji



  • 1919. - U Münchenu proglašena Bavarska sovjetska republika.


  • 1939. - Drugi svjetski rat: Italija okupirala Albaniju


  • 1963. - Usvojen je novi savezni Ustav kojim je Jugoslavija promijenila ime u Socijalističku Federativnu Republiku Jugoslaviju (SFRJ).


  • 1992. - RH odlukom predsjednika dr. Franje Tuđmana među prvima u svijetu priznala neovisnost, samostalnost i teritorijalni integritet Republike BiH


  • 1992. - SAD priznale Republiku Hrvatsku





Rođenja 7. travnja



  • 1506. - Sveti Franjo Ksaverski


  • 1770. - William Wordsworth


  • 1772. - Charles Fourier, filozof


  • 1899. - Ante Topić Mimara, kolekcionar i povjesničar umjetnosti († 1987).


  • 1915. - Billie Holiday, jazz pjevačica († 1959).


  • 1920. - Ravi Shankar


  • 1924. - Johannes Mario Simmel, pisac


  • 1939. - Francis Ford Coppola, američki redatelj, scenarist i producent


  • 1944. - Gerhard Schröder, njemački političar i državnik


  • 1949. - Mesud Dedović, bosanskohercegovački glumac


  • 1954. - Jackie Chan, kineski glumac


  • 1985. - Mia Biondić, hrvatska glumica


Smrti 7. travnja



  • 1789. - Abdul Hamid I., turski sultan (* 1725.)

  • 1834. - Pedro I. Brazilski, brazilski car (* 1798.)


  • 1854. - Georg Simon Ohm, njemački fizičar (* 1787.)


  • 1919. - Jozafata Hordaševska, ukrajinska redovnica (* 1869.)


  • 1931. - Milutin Cihlar Nehajev, književnik i novinar (* 1880.)


  • 1975. - Krsto Hegedušić, hrvatski slikar (* 1901.)


  • 2017. - Relja Bašić, hrvatski kazališni, filmski i televizijski glumac i redatelj (* 1930.)

Blagdani i spomendani


  • Svjetski dan zdravlja

Imendani











Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=7._travnja&oldid=5088649"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.116","walltime":"0.142","ppvisitednodes":"value":661,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":40734,"limit":2097152,"templateargumentsize":"value":17453,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 30.571 1 Predložak:Mjeseci_i_dani_u_godini","100.00% 30.571 1 -total"," 86.23% 26.361 1 Predložak:Navigacija"," 22.69% 6.936 1 Predložak:Tnavbar"," 8.52% 2.605 2 Predložak:·w"," 7.95% 2.430 3 Predložak:·"],"cachereport":"origin":"mw1243","timestamp":"20190316085720","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"7. travnja","url":"https://hr.wikipedia.org/wiki/7._travnja","sameAs":"http://www.wikidata.org/entity/Q2505","mainEntity":"http://www.wikidata.org/entity/Q2505","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2003-11-19T00:05:56Z","dateModified":"2018-05-30T22:39:30Z","headline":"datum"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":145,"wgHostname":"mw1248"););

Popular posts from this blog

What does it mean to find percent difference when two values are equivalent? The 2019 Stack Overflow Developer Survey Results Are InWhat does “percent of change” mean?Find what percent X is between two numbers?Unable to determine 'original amount' in simple percentage problemsWhat is the correct percent difference formula?How does proportionality hold when quantities are high? And the percentage increase formulaprofit and loss GRE questionProfitability calculationWhat is the difference between $xtimes 0.8$ and $x div 1.2 ? $Finding the percent probability of completing BUDs trainingCalculating Percent Difference with zero and near zero values

Why did some early computer designers eschew integers?What register size did early computers use?What other computers used this floating-point format?Why did so many early microcomputers use the MOS 6502 and variants?Why were early computers named “Mark”?Why did expert systems fall?Why were early personal computer monitors not green?When did “Zen” in computer programming become a thing?History of advanced hardwareWere there any working computers using residue number systems?Why did some CPUs use two Read/Write lines, and others just one?

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective