What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The closed subgroup of Lie groupExample: Lie group compact, abelian and disconnected.Center of compact lie group closed?Lie Subgroup Example - Explanation?Examples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.Maximal compact subgroup of abelian Lie groupA question on abelian Lie groups and maximal compact subgroupClosed Subgroup of $GL(n,mathbbK)$ is Lie group.factoring a neighborhood of identity in a compact connected Lie group with a closed Lie subgroupLattice and abelian Lie groups
Does Parliament hold absolute power in the UK?
Do working physicists consider Newtonian mechanics to be "falsified"?
Segmentation fault output is suppressed when piping stdin into a function. Why?
Semisimplicity of the category of coherent sheaves?
Problems with Ubuntu mount /tmp
"... to apply for a visa" or "... and applied for a visa"?
How to delete random line from file using Unix command?
Wall plug outlet change
Is this wall load bearing? Blueprints and photos attached
Would an alien lifeform be able to achieve space travel if lacking in vision?
Can the DM override racial traits?
ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?
Road tyres vs "Street" tyres for charity ride on MTB Tandem
Sort list of array linked objects by keys and values
In horse breeding, what is the female equivalent of putting a horse out "to stud"?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Can the prologue be the backstory of your main character?
Simulating Exploding Dice
A pet rabbit called Belle
Didn't get enough time to take a Coding Test - what to do now?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
How are presidential pardons supposed to be used?
Are my PIs rude or am I just being too sensitive?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The closed subgroup of Lie groupExample: Lie group compact, abelian and disconnected.Center of compact lie group closed?Lie Subgroup Example - Explanation?Examples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.Maximal compact subgroup of abelian Lie groupA question on abelian Lie groups and maximal compact subgroupClosed Subgroup of $GL(n,mathbbK)$ is Lie group.factoring a neighborhood of identity in a compact connected Lie group with a closed Lie subgroupLattice and abelian Lie groups
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
3
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
general-topology differential-geometry lie-groups lie-algebras
edited Apr 8 at 9:07
YuiTo Cheng
2,40641037
2,40641037
asked Apr 8 at 1:15
Amrat AAmrat A
350111
350111
3
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14
add a comment |
3
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14
3
3
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
|
show 5 more comments
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$
and
$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
edited Apr 8 at 8:35
answered Apr 8 at 1:26
Alex YoucisAlex Youcis
36.4k775115
36.4k775115
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
|
show 5 more comments
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37
1
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58
1
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08
|
show 5 more comments
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
add a comment |
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
add a comment |
$begingroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
$endgroup$
Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).
answered Apr 8 at 3:24
RandallRandall
10.7k11431
10.7k11431
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
add a comment |
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
2
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14