What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The closed subgroup of Lie groupExample: Lie group compact, abelian and disconnected.Center of compact lie group closed?Lie Subgroup Example - Explanation?Examples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.Maximal compact subgroup of abelian Lie groupA question on abelian Lie groups and maximal compact subgroupClosed Subgroup of $GL(n,mathbbK)$ is Lie group.factoring a neighborhood of identity in a compact connected Lie group with a closed Lie subgroupLattice and abelian Lie groups

Does Parliament hold absolute power in the UK?

Do working physicists consider Newtonian mechanics to be "falsified"?

Segmentation fault output is suppressed when piping stdin into a function. Why?

Semisimplicity of the category of coherent sheaves?

Problems with Ubuntu mount /tmp

"... to apply for a visa" or "... and applied for a visa"?

How to delete random line from file using Unix command?

Wall plug outlet change

Is this wall load bearing? Blueprints and photos attached

Would an alien lifeform be able to achieve space travel if lacking in vision?

Can the DM override racial traits?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

Road tyres vs "Street" tyres for charity ride on MTB Tandem

Sort list of array linked objects by keys and values

In horse breeding, what is the female equivalent of putting a horse out "to stud"?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

Can the prologue be the backstory of your main character?

Simulating Exploding Dice

A pet rabbit called Belle

Didn't get enough time to take a Coding Test - what to do now?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

How are presidential pardons supposed to be used?

Are my PIs rude or am I just being too sensitive?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?



What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The closed subgroup of Lie groupExample: Lie group compact, abelian and disconnected.Center of compact lie group closed?Lie Subgroup Example - Explanation?Examples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.Maximal compact subgroup of abelian Lie groupA question on abelian Lie groups and maximal compact subgroupClosed Subgroup of $GL(n,mathbbK)$ is Lie group.factoring a neighborhood of identity in a compact connected Lie group with a closed Lie subgroupLattice and abelian Lie groups










3












$begingroup$



What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?




Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    Apr 8 at 3:14
















3












$begingroup$



What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?




Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    Apr 8 at 3:14














3












3








3





$begingroup$



What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?




Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$





What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?




Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?







general-topology differential-geometry lie-groups lie-algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 9:07









YuiTo Cheng

2,40641037




2,40641037










asked Apr 8 at 1:15









Amrat AAmrat A

350111




350111







  • 3




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    Apr 8 at 3:14













  • 3




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    Apr 8 at 3:14








3




3




$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14





$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
Apr 8 at 3:14











2 Answers
2






active

oldest

votes


















4












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    Apr 8 at 1:34











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:36










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    Apr 8 at 1:37






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:58






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    Apr 8 at 2:08


















7












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    Apr 8 at 3:37











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    Apr 8 at 1:34











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:36










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    Apr 8 at 1:37






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:58






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    Apr 8 at 2:08















4












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    Apr 8 at 1:34











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:36










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    Apr 8 at 1:37






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:58






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    Apr 8 at 2:08













4












4








4





$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$



EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutator) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 8 at 8:35

























answered Apr 8 at 1:26









Alex YoucisAlex Youcis

36.4k775115




36.4k775115











  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    Apr 8 at 1:34











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:36










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    Apr 8 at 1:37






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:58






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    Apr 8 at 2:08
















  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    Apr 8 at 1:34











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:36










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    Apr 8 at 1:37






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    Apr 8 at 1:58






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    Apr 8 at 2:08















$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34





$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
Apr 8 at 1:34













$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36




$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
Apr 8 at 1:36












$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37




$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
Apr 8 at 1:37




1




1




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
Apr 8 at 1:58




1




1




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
Apr 8 at 2:08











7












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    Apr 8 at 3:37















7












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    Apr 8 at 3:37













7












7








7





$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$



Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 8 at 3:24









RandallRandall

10.7k11431




10.7k11431







  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    Apr 8 at 3:37












  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    Apr 8 at 3:37







2




2




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
Apr 8 at 3:37

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

WordPress Information needed

Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj