Skip to main content

Lee Jung-soo Navigacijski izbornikuDopunite ga

U izradi, NogometašiJužnokorejski nogometaši


Gimhae8. siječnja1980.južnokorejskinogometašsredišnji braničLee Woon‑JaeOh Beom‑SeokKim Hyung‑IlCho Yong‑HyungKim Nam‑IlKim Bo‑KyungPark Ji‑sungCaptain sports.svgKim Jung‑WooAhn Jung‑HwanPark Chu‑YoungLee Seung‑RyulLee Young‑PyoKim Jae‑SungLee Jung‑sooKim Dong‑JinKi Sung‑YongLee Chung‑YongJung Sung‑RyongYeom Ki‑HunLee Dong‑GookKim Young‑KwangCha Du‑RiKang Min‑SooHuh Jung‑MooSoccerball.svgP vip.svg












Lee Jung-soo




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje

























Jung-Soo Lee

Lee Jung-Soo.jpg


Osobni podatci
Puno ime
Lee Jung-soo
Rođen

8. siječnja 1980.
Visina
188 cm
Klub
Trenutačni klub

Charlotte Independence
Broj
40
Pozicija
središnji branič
Mlađi uzrasti
1998. - 2001.
Kyunghee University
Igračka karijera*

Godina

Klub

Nast. (gol.)

2002. - 2003.
2004. - 2005.
2006. - 2008.
2009.
2010.
2010. - 2015.
2016. - 2017.
2018. -



Anyang LG Cheetahs
Incheon United
Suwon Samsung
Kyoto Sanga
Kashima Antlers
Al-Sadd
Suwon Samsung Bluewings
Charlotte Independence



29 (2)
20 (1)
46 (3)
34 (6)
10 (3)
113 (10)
30 (3)
10 (0)


Reprezentativna karijera

2008. - 2013.



Flag of South Korea.svg Južna Koreja



54 (5)


Bilješke


* Nastupi i (golovi) u profesionalnim klubovima
broje se samo za ligu iz koje je klub.



Portal o životopisima

Portal o športu

Lee Jung-soo (Gimhae, 8. siječnja 1980.) je južnokorejski nogometaš koji igra za središnji branič.



Soccerball.svgP vip.svgNedovršeni članak Lee Jung-soo koji govori o nogometašu treba dopuniti. Dopunite ga prema pravilima Wikipedije.









Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Lee_Jung-soo&oldid=5116705"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.064","walltime":"0.095","ppvisitednodes":"value":811,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":21511,"limit":2097152,"templateargumentsize":"value":6687,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":1,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 58.864 1 -total"," 50.75% 29.874 1 Predložak:Sastav_Južna_Koreja_2010_SP"," 42.32% 24.913 1 Predložak:Infookvir_nogometaš/trener/izbornik"," 36.04% 21.214 1 Predložak:Navigacija"," 23.65% 13.920 1 Predložak:NogRep"," 10.04% 5.909 1 Predložak:Tnavbar"," 6.65% 3.917 1 Predložak:Mrva-biog-nogomet"," 5.87% 3.457 1 Predložak:Switch"," 5.12% 3.013 6 Predložak:Nowrap"," 4.15% 2.440 1 Predložak:Kapetan"],"cachereport":"origin":"mw1332","timestamp":"20190409082329","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":101,"wgHostname":"mw1327"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...