Representation of $overlinemathbbQ$ in One Dimension The 2019 Stack Overflow Developer Survey Results Are InFor a topological group $G$ and a subgroup $H$, is it true that $[overlineH, overlineH] = overline[H,H]$? What about algebraic groups?Set $S$ which is path-connected, but $overlineS$ is not path-connected$operatornamedisc(mathbbZ[alpha]) = [mathcalO_K:mathbbZ[alpha]]^2operatornamedisc(mathcalO_K)$.Does $overlineA+B=overline A+overline B$ hold if $overline A$ and $overline B$ are compact?A question from the proof of topologists sine curve being not path connectedConstructing explicit connected path for coefficients of monic polynomials with roots lying in the open left half plane?Constructing a continuous path between two matricesWhat is the discriminant of this order $A=mathbbZ[alpha]capmathbbZ[alpha^-1]$?What's in a Noetherian $mathbbA$-Module Ephemeralization?Prüfer Groups and Product Topologies

Is there a symbol for a right arrow with a square in the middle?

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

Why do UK politicians seemingly ignore opinion polls on Brexit?

How come people say “Would of”?

Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?

Did 3000BC Egyptians use meteoric iron weapons?

Can you compress metal and what would be the consequences?

What did it mean to "align" a radio?

Apparent duplicates between Haynes service instructions and MOT

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

Reference request: Oldest number theory books with (unsolved) exercises?

Button changing it's text & action. Good or terrible?

Did Section 31 appear in Star Trek: The Next Generation?

Does a dangling wire really electrocute me if I'm standing in water?

One word riddle: Vowel in the middle

What is the most effective way of iterating a std::vector and why?

Looking for Correct Greek Translation for Heraclitus

For what reasons would an animal species NOT cross a *horizontal* land bridge?

When should I buy a clipper card after flying to OAK?

Does the shape of a die affect the probability of a number being rolled?

What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?

What is the meaning of Triage in Cybersec world?

How technical should a Scrum Master be to effectively remove impediments?

Are there incongruent pythagorean triangles with the same perimeter and same area?



Representation of $overlinemathbbQ$ in One Dimension



The 2019 Stack Overflow Developer Survey Results Are InFor a topological group $G$ and a subgroup $H$, is it true that $[overlineH, overlineH] = overline[H,H]$? What about algebraic groups?Set $S$ which is path-connected, but $overlineS$ is not path-connected$operatornamedisc(mathbbZ[alpha]) = [mathcalO_K:mathbbZ[alpha]]^2operatornamedisc(mathcalO_K)$.Does $overlineA+B=overline A+overline B$ hold if $overline A$ and $overline B$ are compact?A question from the proof of topologists sine curve being not path connectedConstructing explicit connected path for coefficients of monic polynomials with roots lying in the open left half plane?Constructing a continuous path between two matricesWhat is the discriminant of this order $A=mathbbZ[alpha]capmathbbZ[alpha^-1]$?What's in a Noetherian $mathbbA$-Module Ephemeralization?Prüfer Groups and Product Topologies










2












$begingroup$


Introduction: Below gives an approach to realize the algebraic numbers $overlinemathbbQsubseteqmathbbC$ within a $1$-dimensional compact connected abelian group (solenoid). Essentially a trade is made: sacrifice path-connectedness in $mathbbC$ to exhibit an algebraic, topological, analytic, and geometric setting in $1$ real dimension for $overlinemathbbQ$. The asserted correspondence identifies each algebraic number with a path component of the solenoid.



Let $boldsymbol1=(1+2mathbbZ,1+3mathbbZ,1+5mathbbZ,dots)inDelta,colon!= prod_pinmathbbPfracmathbbZpmathbbZ$, a commutative profinite ring with identity. Identify $mathbbZ$ with the dense subgroup $mathbbZboldsymbol1subseteqDelta$. A $widehatmathbbZ$-module structure is defined on $Delta$ by continuously extending the natural multiplication $mathbbZtimesDeltarightarrowDelta$. The resulting scalar multiplication is compatible with the continuous componentwise ring multiplication on $Delta$. In other words, $Delta$ is a finitely generated $widehatmathbbZ$-algebra.



Identify $Delta$ with its topologically isomorphic image in $G,colon!=fracDeltatimesmathbbRmathbbZ(boldsymbol1,1)$, a $1$-dimensional compact connected abelian group, or solenoid, with a metric topology and (WLOG) total Haar measure $1$.



Define $mathbbQDelta$ to be the subgroup of $G$ generated by its profinite subgroups. It is known that




  • $mathbbQDelta$ is the union of all subgroups $D$ of $G$ containing $Delta$ for which $[D,colonDelta]<infty$.

  • For each $boldsymbolgammainmathbbQDelta$ there is $0neq n_boldsymbolgammainmathbbZ$ with $n_boldsymbolgammaboldsymbolgammainDelta$.


  • $mathbbQDelta$ is a $0$-dimensional, non-locally-compact, divisible, incomplete metric subgroup of $G$.


  • $G$ has a dense subgroup $Xcongsumlimits_pinmathbbPfrac1pmathbbZ$ algebraically isomorphic to the Pontryagin dual of $G$.


  • $G$ is topologically isomorphic to $fracmathbbQDeltatimesmathbbRX(boldsymbol1,1)$ with identfications $DeltasubseteqmathbbQDeltasubseteq G$ and $XsubseteqmathbbQDeltasubseteq G$, subject to the caveat that under the identifications the algebro-topological realizations of $mathbbQDelta$ and $X$ go from locally compact outside of $G$ to non-locally-compact as subgroups of $G$.

Each algebraic number $alphanotinmathbbZ$ has the form $beta_alpha/n_alpha$ for some algebraic integer $beta_alpha$ and some minimal positive integer $n_alpha >1$. Let $s_alpha(x)$ denote a nonconstant monic irreducible polynomial in $mathbbZ[x]$ with $s_alpha(beta_alpha)=0$.



Let $mathbbP$ denote the set of prime numbers. For each $minmathbbZ$, let $mathbbP_alpha,m =p_alpha,m,1,dots,p_alpha,m,k_m$ according to the prime factorization $s_alpha(m) = pm p_alpha,m,1^r_alpha,m,1cdots p_alpha,m,k_m^r_alpha,m,k_m$. For example, $varnothingneqmathbbP_alpha,0= p_alpha,0,1,dots, p_alpha,0,k_0$ because $s_alpha(0)=pm p_alpha,0,1^r_alpha,0,1cdots p_alpha,0,k_0^r_alpha,0,k_0$ is the constant term of the irreducible polynomial $s_alpha (x)inmathbbZ[x]$, and for $qinmathbbP$ we have $mathbbP_alpha,q= p_alpha,q,1,dots, p_alpha,q,k_q$ where $s_alpha(q) = pm p_alpha,q,1^r_alpha,q,1cdots p_alpha,q,k_q^r_alpha,q,k_q$.



For $pinmathbbP$, let $Z_alpha,,p=minmathbbZ,colon pmid s_alpha(m)$. Let $overlineZ_alpha,,p=m+pmathbbZinmathbbZ/pmathbbZ,colon min Z_alpha,,p$. Then




  1. $mathbbP_alpha,colon!= pinmathbbP,colon, pmid s_alpha(m)$ for some $minmathbbZ=bigcuplimits_minmathbbZmathbbP_alpha,m$ is infinite,


  2. $Z_alpha,,p=varnothing$ if $pnotinmathbbP_alpha$,


  3. $Z_alpha,,p$ is infinite if $pinmathbbP_alpha$,


  4. $lvertoverlineZ_alpha,,prvert >1$ for infinitely many $pinmathbbP_alpha$,


  5. $0in Z_alpha,,p_0,1capcdotscap Z_alpha,,p_0,k_0$,


  6. $pinmathbbP,colon Z_alpha,,pcap mathbbP_alpha,,pneqvarnothing= p_0,1,dots, p_0,k_0$.

Define $Delta_alpha =boldsymbolgammainDelta,colon, forall,pnotinmathbbP_alpha,0,, pnmidgamma_pLeftrightarrow gamma_pin Z_alpha,,psubseteqDelta$. By (1) and (4), $Delta_alpha$ is uncountable. Let $boldsymbolbeta_alpha$ be the unique element of $Delta_alpha$ satisfying $0lebeta_alpha,,p<p$ with $beta_alpha,,p$ minimal for all $pinmathbbP$. Define $boldsymbolbeta_alpha/n_alphainmathbbQDelta$ to be the element $boldsymbolr_alpha=(r_alpha,2+2^ell_2mathbbZ,r_alpha,3+3^ell_3mathbbZ,r_alpha,5+5^ell_5mathbbZ,dots)$ with $n_alpha boldsymbolr_alpha=boldsymbolbeta_alpha$ and $0le r_alpha,,p<p^ell_p$ with $r_alpha,,p$ minimal for all $pinmathbbP$.



Define $sim$ on $mathbbQDelta$ by $boldsymbolgammasimboldsymboldeltaLeftrightarrow$ there exists $alphainoverlinemathbbQ$ such that $pmid n_alpha(gamma_p-delta_p)$ for almost all $pin mathbbP_alpha$. Write $[boldsymbolgamma]$ for the equivalence class of $boldsymbolgamma$.



Define $fcolonoverlinemathbbQrightarrowmathbbQDelta/!!sim$ by $f(alpha)=[boldsymbolbeta_alpha/n_alpha]$ for $alpha=beta_alpha/n_alphainoverlinemathbbQ$ where $n_alpha=1Leftrightarrow beta_alphainmathbbZ$. Then $f$ is well-defined and surjective.



$rm Aut,mathbbZ[x]=gin rm End,mathbbZ[x]: g(1)=1$ and $g(x)= mpm x$ for some $minmathbbZ$ acts on $mathbbZ[x]$, taking monic irreducible polynomials to monic irreducible polynomials, and so defines a group action on $overlinemathbbQ$ which induces a well-defined group action on $mathbbQDelta/!!sim$ by $t(x)f(alpha),colon!= f(t(x)alpha)$.



Denote the quotient $overlinemathbbQDelta,,colon! = rm Aut,mathbbZ[x]backslash mathbbQDelta/!!sim$. The elements of $overlinemathbbQDelta$ are the orbits of $[boldsymbolbeta_alpha/n_alpha]$ under the induced group action, and these orbits correspond bijectively with the path components of $G$ via $rm Aut,mathbbZ[x]backslash [boldsymbolbeta_alpha/n_alpha] leftrightarrow boldsymbolbeta_alpha/n_alpha + G_a$, where $G_a$ denotes the path component of $0in G$.



Thus, $overlinemathbbQcong overlinemathbbQDelta$ exhibits a one-to-one correspondence between algebraic numbers and path components of the $1$-dimensional compact connected abelian group $G$.



Question: Is this construction correct? If not, is it fixable? If fixable, what changes are needed?










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
    $endgroup$
    – b00n heT
    Apr 7 at 7:27
















2












$begingroup$


Introduction: Below gives an approach to realize the algebraic numbers $overlinemathbbQsubseteqmathbbC$ within a $1$-dimensional compact connected abelian group (solenoid). Essentially a trade is made: sacrifice path-connectedness in $mathbbC$ to exhibit an algebraic, topological, analytic, and geometric setting in $1$ real dimension for $overlinemathbbQ$. The asserted correspondence identifies each algebraic number with a path component of the solenoid.



Let $boldsymbol1=(1+2mathbbZ,1+3mathbbZ,1+5mathbbZ,dots)inDelta,colon!= prod_pinmathbbPfracmathbbZpmathbbZ$, a commutative profinite ring with identity. Identify $mathbbZ$ with the dense subgroup $mathbbZboldsymbol1subseteqDelta$. A $widehatmathbbZ$-module structure is defined on $Delta$ by continuously extending the natural multiplication $mathbbZtimesDeltarightarrowDelta$. The resulting scalar multiplication is compatible with the continuous componentwise ring multiplication on $Delta$. In other words, $Delta$ is a finitely generated $widehatmathbbZ$-algebra.



Identify $Delta$ with its topologically isomorphic image in $G,colon!=fracDeltatimesmathbbRmathbbZ(boldsymbol1,1)$, a $1$-dimensional compact connected abelian group, or solenoid, with a metric topology and (WLOG) total Haar measure $1$.



Define $mathbbQDelta$ to be the subgroup of $G$ generated by its profinite subgroups. It is known that




  • $mathbbQDelta$ is the union of all subgroups $D$ of $G$ containing $Delta$ for which $[D,colonDelta]<infty$.

  • For each $boldsymbolgammainmathbbQDelta$ there is $0neq n_boldsymbolgammainmathbbZ$ with $n_boldsymbolgammaboldsymbolgammainDelta$.


  • $mathbbQDelta$ is a $0$-dimensional, non-locally-compact, divisible, incomplete metric subgroup of $G$.


  • $G$ has a dense subgroup $Xcongsumlimits_pinmathbbPfrac1pmathbbZ$ algebraically isomorphic to the Pontryagin dual of $G$.


  • $G$ is topologically isomorphic to $fracmathbbQDeltatimesmathbbRX(boldsymbol1,1)$ with identfications $DeltasubseteqmathbbQDeltasubseteq G$ and $XsubseteqmathbbQDeltasubseteq G$, subject to the caveat that under the identifications the algebro-topological realizations of $mathbbQDelta$ and $X$ go from locally compact outside of $G$ to non-locally-compact as subgroups of $G$.

Each algebraic number $alphanotinmathbbZ$ has the form $beta_alpha/n_alpha$ for some algebraic integer $beta_alpha$ and some minimal positive integer $n_alpha >1$. Let $s_alpha(x)$ denote a nonconstant monic irreducible polynomial in $mathbbZ[x]$ with $s_alpha(beta_alpha)=0$.



Let $mathbbP$ denote the set of prime numbers. For each $minmathbbZ$, let $mathbbP_alpha,m =p_alpha,m,1,dots,p_alpha,m,k_m$ according to the prime factorization $s_alpha(m) = pm p_alpha,m,1^r_alpha,m,1cdots p_alpha,m,k_m^r_alpha,m,k_m$. For example, $varnothingneqmathbbP_alpha,0= p_alpha,0,1,dots, p_alpha,0,k_0$ because $s_alpha(0)=pm p_alpha,0,1^r_alpha,0,1cdots p_alpha,0,k_0^r_alpha,0,k_0$ is the constant term of the irreducible polynomial $s_alpha (x)inmathbbZ[x]$, and for $qinmathbbP$ we have $mathbbP_alpha,q= p_alpha,q,1,dots, p_alpha,q,k_q$ where $s_alpha(q) = pm p_alpha,q,1^r_alpha,q,1cdots p_alpha,q,k_q^r_alpha,q,k_q$.



For $pinmathbbP$, let $Z_alpha,,p=minmathbbZ,colon pmid s_alpha(m)$. Let $overlineZ_alpha,,p=m+pmathbbZinmathbbZ/pmathbbZ,colon min Z_alpha,,p$. Then




  1. $mathbbP_alpha,colon!= pinmathbbP,colon, pmid s_alpha(m)$ for some $minmathbbZ=bigcuplimits_minmathbbZmathbbP_alpha,m$ is infinite,


  2. $Z_alpha,,p=varnothing$ if $pnotinmathbbP_alpha$,


  3. $Z_alpha,,p$ is infinite if $pinmathbbP_alpha$,


  4. $lvertoverlineZ_alpha,,prvert >1$ for infinitely many $pinmathbbP_alpha$,


  5. $0in Z_alpha,,p_0,1capcdotscap Z_alpha,,p_0,k_0$,


  6. $pinmathbbP,colon Z_alpha,,pcap mathbbP_alpha,,pneqvarnothing= p_0,1,dots, p_0,k_0$.

Define $Delta_alpha =boldsymbolgammainDelta,colon, forall,pnotinmathbbP_alpha,0,, pnmidgamma_pLeftrightarrow gamma_pin Z_alpha,,psubseteqDelta$. By (1) and (4), $Delta_alpha$ is uncountable. Let $boldsymbolbeta_alpha$ be the unique element of $Delta_alpha$ satisfying $0lebeta_alpha,,p<p$ with $beta_alpha,,p$ minimal for all $pinmathbbP$. Define $boldsymbolbeta_alpha/n_alphainmathbbQDelta$ to be the element $boldsymbolr_alpha=(r_alpha,2+2^ell_2mathbbZ,r_alpha,3+3^ell_3mathbbZ,r_alpha,5+5^ell_5mathbbZ,dots)$ with $n_alpha boldsymbolr_alpha=boldsymbolbeta_alpha$ and $0le r_alpha,,p<p^ell_p$ with $r_alpha,,p$ minimal for all $pinmathbbP$.



Define $sim$ on $mathbbQDelta$ by $boldsymbolgammasimboldsymboldeltaLeftrightarrow$ there exists $alphainoverlinemathbbQ$ such that $pmid n_alpha(gamma_p-delta_p)$ for almost all $pin mathbbP_alpha$. Write $[boldsymbolgamma]$ for the equivalence class of $boldsymbolgamma$.



Define $fcolonoverlinemathbbQrightarrowmathbbQDelta/!!sim$ by $f(alpha)=[boldsymbolbeta_alpha/n_alpha]$ for $alpha=beta_alpha/n_alphainoverlinemathbbQ$ where $n_alpha=1Leftrightarrow beta_alphainmathbbZ$. Then $f$ is well-defined and surjective.



$rm Aut,mathbbZ[x]=gin rm End,mathbbZ[x]: g(1)=1$ and $g(x)= mpm x$ for some $minmathbbZ$ acts on $mathbbZ[x]$, taking monic irreducible polynomials to monic irreducible polynomials, and so defines a group action on $overlinemathbbQ$ which induces a well-defined group action on $mathbbQDelta/!!sim$ by $t(x)f(alpha),colon!= f(t(x)alpha)$.



Denote the quotient $overlinemathbbQDelta,,colon! = rm Aut,mathbbZ[x]backslash mathbbQDelta/!!sim$. The elements of $overlinemathbbQDelta$ are the orbits of $[boldsymbolbeta_alpha/n_alpha]$ under the induced group action, and these orbits correspond bijectively with the path components of $G$ via $rm Aut,mathbbZ[x]backslash [boldsymbolbeta_alpha/n_alpha] leftrightarrow boldsymbolbeta_alpha/n_alpha + G_a$, where $G_a$ denotes the path component of $0in G$.



Thus, $overlinemathbbQcong overlinemathbbQDelta$ exhibits a one-to-one correspondence between algebraic numbers and path components of the $1$-dimensional compact connected abelian group $G$.



Question: Is this construction correct? If not, is it fixable? If fixable, what changes are needed?










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
    $endgroup$
    – b00n heT
    Apr 7 at 7:27














2












2








2


1



$begingroup$


Introduction: Below gives an approach to realize the algebraic numbers $overlinemathbbQsubseteqmathbbC$ within a $1$-dimensional compact connected abelian group (solenoid). Essentially a trade is made: sacrifice path-connectedness in $mathbbC$ to exhibit an algebraic, topological, analytic, and geometric setting in $1$ real dimension for $overlinemathbbQ$. The asserted correspondence identifies each algebraic number with a path component of the solenoid.



Let $boldsymbol1=(1+2mathbbZ,1+3mathbbZ,1+5mathbbZ,dots)inDelta,colon!= prod_pinmathbbPfracmathbbZpmathbbZ$, a commutative profinite ring with identity. Identify $mathbbZ$ with the dense subgroup $mathbbZboldsymbol1subseteqDelta$. A $widehatmathbbZ$-module structure is defined on $Delta$ by continuously extending the natural multiplication $mathbbZtimesDeltarightarrowDelta$. The resulting scalar multiplication is compatible with the continuous componentwise ring multiplication on $Delta$. In other words, $Delta$ is a finitely generated $widehatmathbbZ$-algebra.



Identify $Delta$ with its topologically isomorphic image in $G,colon!=fracDeltatimesmathbbRmathbbZ(boldsymbol1,1)$, a $1$-dimensional compact connected abelian group, or solenoid, with a metric topology and (WLOG) total Haar measure $1$.



Define $mathbbQDelta$ to be the subgroup of $G$ generated by its profinite subgroups. It is known that




  • $mathbbQDelta$ is the union of all subgroups $D$ of $G$ containing $Delta$ for which $[D,colonDelta]<infty$.

  • For each $boldsymbolgammainmathbbQDelta$ there is $0neq n_boldsymbolgammainmathbbZ$ with $n_boldsymbolgammaboldsymbolgammainDelta$.


  • $mathbbQDelta$ is a $0$-dimensional, non-locally-compact, divisible, incomplete metric subgroup of $G$.


  • $G$ has a dense subgroup $Xcongsumlimits_pinmathbbPfrac1pmathbbZ$ algebraically isomorphic to the Pontryagin dual of $G$.


  • $G$ is topologically isomorphic to $fracmathbbQDeltatimesmathbbRX(boldsymbol1,1)$ with identfications $DeltasubseteqmathbbQDeltasubseteq G$ and $XsubseteqmathbbQDeltasubseteq G$, subject to the caveat that under the identifications the algebro-topological realizations of $mathbbQDelta$ and $X$ go from locally compact outside of $G$ to non-locally-compact as subgroups of $G$.

Each algebraic number $alphanotinmathbbZ$ has the form $beta_alpha/n_alpha$ for some algebraic integer $beta_alpha$ and some minimal positive integer $n_alpha >1$. Let $s_alpha(x)$ denote a nonconstant monic irreducible polynomial in $mathbbZ[x]$ with $s_alpha(beta_alpha)=0$.



Let $mathbbP$ denote the set of prime numbers. For each $minmathbbZ$, let $mathbbP_alpha,m =p_alpha,m,1,dots,p_alpha,m,k_m$ according to the prime factorization $s_alpha(m) = pm p_alpha,m,1^r_alpha,m,1cdots p_alpha,m,k_m^r_alpha,m,k_m$. For example, $varnothingneqmathbbP_alpha,0= p_alpha,0,1,dots, p_alpha,0,k_0$ because $s_alpha(0)=pm p_alpha,0,1^r_alpha,0,1cdots p_alpha,0,k_0^r_alpha,0,k_0$ is the constant term of the irreducible polynomial $s_alpha (x)inmathbbZ[x]$, and for $qinmathbbP$ we have $mathbbP_alpha,q= p_alpha,q,1,dots, p_alpha,q,k_q$ where $s_alpha(q) = pm p_alpha,q,1^r_alpha,q,1cdots p_alpha,q,k_q^r_alpha,q,k_q$.



For $pinmathbbP$, let $Z_alpha,,p=minmathbbZ,colon pmid s_alpha(m)$. Let $overlineZ_alpha,,p=m+pmathbbZinmathbbZ/pmathbbZ,colon min Z_alpha,,p$. Then




  1. $mathbbP_alpha,colon!= pinmathbbP,colon, pmid s_alpha(m)$ for some $minmathbbZ=bigcuplimits_minmathbbZmathbbP_alpha,m$ is infinite,


  2. $Z_alpha,,p=varnothing$ if $pnotinmathbbP_alpha$,


  3. $Z_alpha,,p$ is infinite if $pinmathbbP_alpha$,


  4. $lvertoverlineZ_alpha,,prvert >1$ for infinitely many $pinmathbbP_alpha$,


  5. $0in Z_alpha,,p_0,1capcdotscap Z_alpha,,p_0,k_0$,


  6. $pinmathbbP,colon Z_alpha,,pcap mathbbP_alpha,,pneqvarnothing= p_0,1,dots, p_0,k_0$.

Define $Delta_alpha =boldsymbolgammainDelta,colon, forall,pnotinmathbbP_alpha,0,, pnmidgamma_pLeftrightarrow gamma_pin Z_alpha,,psubseteqDelta$. By (1) and (4), $Delta_alpha$ is uncountable. Let $boldsymbolbeta_alpha$ be the unique element of $Delta_alpha$ satisfying $0lebeta_alpha,,p<p$ with $beta_alpha,,p$ minimal for all $pinmathbbP$. Define $boldsymbolbeta_alpha/n_alphainmathbbQDelta$ to be the element $boldsymbolr_alpha=(r_alpha,2+2^ell_2mathbbZ,r_alpha,3+3^ell_3mathbbZ,r_alpha,5+5^ell_5mathbbZ,dots)$ with $n_alpha boldsymbolr_alpha=boldsymbolbeta_alpha$ and $0le r_alpha,,p<p^ell_p$ with $r_alpha,,p$ minimal for all $pinmathbbP$.



Define $sim$ on $mathbbQDelta$ by $boldsymbolgammasimboldsymboldeltaLeftrightarrow$ there exists $alphainoverlinemathbbQ$ such that $pmid n_alpha(gamma_p-delta_p)$ for almost all $pin mathbbP_alpha$. Write $[boldsymbolgamma]$ for the equivalence class of $boldsymbolgamma$.



Define $fcolonoverlinemathbbQrightarrowmathbbQDelta/!!sim$ by $f(alpha)=[boldsymbolbeta_alpha/n_alpha]$ for $alpha=beta_alpha/n_alphainoverlinemathbbQ$ where $n_alpha=1Leftrightarrow beta_alphainmathbbZ$. Then $f$ is well-defined and surjective.



$rm Aut,mathbbZ[x]=gin rm End,mathbbZ[x]: g(1)=1$ and $g(x)= mpm x$ for some $minmathbbZ$ acts on $mathbbZ[x]$, taking monic irreducible polynomials to monic irreducible polynomials, and so defines a group action on $overlinemathbbQ$ which induces a well-defined group action on $mathbbQDelta/!!sim$ by $t(x)f(alpha),colon!= f(t(x)alpha)$.



Denote the quotient $overlinemathbbQDelta,,colon! = rm Aut,mathbbZ[x]backslash mathbbQDelta/!!sim$. The elements of $overlinemathbbQDelta$ are the orbits of $[boldsymbolbeta_alpha/n_alpha]$ under the induced group action, and these orbits correspond bijectively with the path components of $G$ via $rm Aut,mathbbZ[x]backslash [boldsymbolbeta_alpha/n_alpha] leftrightarrow boldsymbolbeta_alpha/n_alpha + G_a$, where $G_a$ denotes the path component of $0in G$.



Thus, $overlinemathbbQcong overlinemathbbQDelta$ exhibits a one-to-one correspondence between algebraic numbers and path components of the $1$-dimensional compact connected abelian group $G$.



Question: Is this construction correct? If not, is it fixable? If fixable, what changes are needed?










share|cite|improve this question











$endgroup$




Introduction: Below gives an approach to realize the algebraic numbers $overlinemathbbQsubseteqmathbbC$ within a $1$-dimensional compact connected abelian group (solenoid). Essentially a trade is made: sacrifice path-connectedness in $mathbbC$ to exhibit an algebraic, topological, analytic, and geometric setting in $1$ real dimension for $overlinemathbbQ$. The asserted correspondence identifies each algebraic number with a path component of the solenoid.



Let $boldsymbol1=(1+2mathbbZ,1+3mathbbZ,1+5mathbbZ,dots)inDelta,colon!= prod_pinmathbbPfracmathbbZpmathbbZ$, a commutative profinite ring with identity. Identify $mathbbZ$ with the dense subgroup $mathbbZboldsymbol1subseteqDelta$. A $widehatmathbbZ$-module structure is defined on $Delta$ by continuously extending the natural multiplication $mathbbZtimesDeltarightarrowDelta$. The resulting scalar multiplication is compatible with the continuous componentwise ring multiplication on $Delta$. In other words, $Delta$ is a finitely generated $widehatmathbbZ$-algebra.



Identify $Delta$ with its topologically isomorphic image in $G,colon!=fracDeltatimesmathbbRmathbbZ(boldsymbol1,1)$, a $1$-dimensional compact connected abelian group, or solenoid, with a metric topology and (WLOG) total Haar measure $1$.



Define $mathbbQDelta$ to be the subgroup of $G$ generated by its profinite subgroups. It is known that




  • $mathbbQDelta$ is the union of all subgroups $D$ of $G$ containing $Delta$ for which $[D,colonDelta]<infty$.

  • For each $boldsymbolgammainmathbbQDelta$ there is $0neq n_boldsymbolgammainmathbbZ$ with $n_boldsymbolgammaboldsymbolgammainDelta$.


  • $mathbbQDelta$ is a $0$-dimensional, non-locally-compact, divisible, incomplete metric subgroup of $G$.


  • $G$ has a dense subgroup $Xcongsumlimits_pinmathbbPfrac1pmathbbZ$ algebraically isomorphic to the Pontryagin dual of $G$.


  • $G$ is topologically isomorphic to $fracmathbbQDeltatimesmathbbRX(boldsymbol1,1)$ with identfications $DeltasubseteqmathbbQDeltasubseteq G$ and $XsubseteqmathbbQDeltasubseteq G$, subject to the caveat that under the identifications the algebro-topological realizations of $mathbbQDelta$ and $X$ go from locally compact outside of $G$ to non-locally-compact as subgroups of $G$.

Each algebraic number $alphanotinmathbbZ$ has the form $beta_alpha/n_alpha$ for some algebraic integer $beta_alpha$ and some minimal positive integer $n_alpha >1$. Let $s_alpha(x)$ denote a nonconstant monic irreducible polynomial in $mathbbZ[x]$ with $s_alpha(beta_alpha)=0$.



Let $mathbbP$ denote the set of prime numbers. For each $minmathbbZ$, let $mathbbP_alpha,m =p_alpha,m,1,dots,p_alpha,m,k_m$ according to the prime factorization $s_alpha(m) = pm p_alpha,m,1^r_alpha,m,1cdots p_alpha,m,k_m^r_alpha,m,k_m$. For example, $varnothingneqmathbbP_alpha,0= p_alpha,0,1,dots, p_alpha,0,k_0$ because $s_alpha(0)=pm p_alpha,0,1^r_alpha,0,1cdots p_alpha,0,k_0^r_alpha,0,k_0$ is the constant term of the irreducible polynomial $s_alpha (x)inmathbbZ[x]$, and for $qinmathbbP$ we have $mathbbP_alpha,q= p_alpha,q,1,dots, p_alpha,q,k_q$ where $s_alpha(q) = pm p_alpha,q,1^r_alpha,q,1cdots p_alpha,q,k_q^r_alpha,q,k_q$.



For $pinmathbbP$, let $Z_alpha,,p=minmathbbZ,colon pmid s_alpha(m)$. Let $overlineZ_alpha,,p=m+pmathbbZinmathbbZ/pmathbbZ,colon min Z_alpha,,p$. Then




  1. $mathbbP_alpha,colon!= pinmathbbP,colon, pmid s_alpha(m)$ for some $minmathbbZ=bigcuplimits_minmathbbZmathbbP_alpha,m$ is infinite,


  2. $Z_alpha,,p=varnothing$ if $pnotinmathbbP_alpha$,


  3. $Z_alpha,,p$ is infinite if $pinmathbbP_alpha$,


  4. $lvertoverlineZ_alpha,,prvert >1$ for infinitely many $pinmathbbP_alpha$,


  5. $0in Z_alpha,,p_0,1capcdotscap Z_alpha,,p_0,k_0$,


  6. $pinmathbbP,colon Z_alpha,,pcap mathbbP_alpha,,pneqvarnothing= p_0,1,dots, p_0,k_0$.

Define $Delta_alpha =boldsymbolgammainDelta,colon, forall,pnotinmathbbP_alpha,0,, pnmidgamma_pLeftrightarrow gamma_pin Z_alpha,,psubseteqDelta$. By (1) and (4), $Delta_alpha$ is uncountable. Let $boldsymbolbeta_alpha$ be the unique element of $Delta_alpha$ satisfying $0lebeta_alpha,,p<p$ with $beta_alpha,,p$ minimal for all $pinmathbbP$. Define $boldsymbolbeta_alpha/n_alphainmathbbQDelta$ to be the element $boldsymbolr_alpha=(r_alpha,2+2^ell_2mathbbZ,r_alpha,3+3^ell_3mathbbZ,r_alpha,5+5^ell_5mathbbZ,dots)$ with $n_alpha boldsymbolr_alpha=boldsymbolbeta_alpha$ and $0le r_alpha,,p<p^ell_p$ with $r_alpha,,p$ minimal for all $pinmathbbP$.



Define $sim$ on $mathbbQDelta$ by $boldsymbolgammasimboldsymboldeltaLeftrightarrow$ there exists $alphainoverlinemathbbQ$ such that $pmid n_alpha(gamma_p-delta_p)$ for almost all $pin mathbbP_alpha$. Write $[boldsymbolgamma]$ for the equivalence class of $boldsymbolgamma$.



Define $fcolonoverlinemathbbQrightarrowmathbbQDelta/!!sim$ by $f(alpha)=[boldsymbolbeta_alpha/n_alpha]$ for $alpha=beta_alpha/n_alphainoverlinemathbbQ$ where $n_alpha=1Leftrightarrow beta_alphainmathbbZ$. Then $f$ is well-defined and surjective.



$rm Aut,mathbbZ[x]=gin rm End,mathbbZ[x]: g(1)=1$ and $g(x)= mpm x$ for some $minmathbbZ$ acts on $mathbbZ[x]$, taking monic irreducible polynomials to monic irreducible polynomials, and so defines a group action on $overlinemathbbQ$ which induces a well-defined group action on $mathbbQDelta/!!sim$ by $t(x)f(alpha),colon!= f(t(x)alpha)$.



Denote the quotient $overlinemathbbQDelta,,colon! = rm Aut,mathbbZ[x]backslash mathbbQDelta/!!sim$. The elements of $overlinemathbbQDelta$ are the orbits of $[boldsymbolbeta_alpha/n_alpha]$ under the induced group action, and these orbits correspond bijectively with the path components of $G$ via $rm Aut,mathbbZ[x]backslash [boldsymbolbeta_alpha/n_alpha] leftrightarrow boldsymbolbeta_alpha/n_alpha + G_a$, where $G_a$ denotes the path component of $0in G$.



Thus, $overlinemathbbQcong overlinemathbbQDelta$ exhibits a one-to-one correspondence between algebraic numbers and path components of the $1$-dimensional compact connected abelian group $G$.



Question: Is this construction correct? If not, is it fixable? If fixable, what changes are needed?







algebraic-number-theory connectedness topological-groups path-connected adeles






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Wayne

















asked Apr 7 at 7:19









WayneWayne

349112




349112







  • 5




    $begingroup$
    Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
    $endgroup$
    – b00n heT
    Apr 7 at 7:27













  • 5




    $begingroup$
    Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
    $endgroup$
    – b00n heT
    Apr 7 at 7:27








5




5




$begingroup$
Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
$endgroup$
– b00n heT
Apr 7 at 7:27





$begingroup$
Add an introduction to the question: otherwise one has to read 40+ lines blindly without knowing what the question is :)
$endgroup$
– b00n heT
Apr 7 at 7:27











0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177887%2frepresentation-of-overline-mathbbq-in-one-dimension%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177887%2frepresentation-of-overline-mathbbq-in-one-dimension%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

WordPress Information needed

Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj