Skip to main content

Prefektura Etolija-Akarnija Općine i zajednice | Navigacijski izbornikwww.aitoloakarnania.grDopunite gau

U izradi, ZemljopisGrčke prefekture


Zapadne GrčkeGeographylogo.svg












Prefektura Etolija-Akarnija




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje




























Prefektura Etolija-Akarnija
Νομός Αιτωλοακαρνανίας

Nomos Etoloakarnanias.png
Položaj prefekture Etolija-Akarnija u Grčkoj

Aitoloakarnania municipalities numbered.svg
Općine u prefekturi Etolija-Akarnija
Periferija
Zapadna Grčka
Sjedište
Mesolongi
Stanovništvo223.188 (2005.)
na 8. mjestu
Površina5460.888 km² na 1. mjestu
Gustoća naseljenostina/km²na 39. mjestu
Broj pokrajina5
Broj općina29
Broj zajednica-
Poštanski broj30x xx
Pozivni broj263x0, 264x0
Registarska oznakaΑΙ, ΜΕ
ISO 3166-2 brojGR-01
Web stranica
www.aitoloakarnania.gr

Etolija-Akarnija je jedna od grčkih prefektura, dio periferije Zapadne Grčke.



Općine i zajednice |































































































OpćinaYPES kodSjedište (ako je različito)Poštanski broj
Agrinio0202302 00
Aitoliko0203
Alyzia0204
Kandila
Amfilochia0205
Anaktorio0206
Vonitsa
Angelokastro0201
Antirrio0207
Apodotia0208
Ano Chora
Arakynthos0209
Papadates
Astakos0210
Chalkeia0229Tríkorfo
Fyteies0228
Inachos0213
Néo Chalkiópoulo
Kekropia0214
Palairos
Makryneia0215
Gavalou
Medeon0216
Katouna
Menidi0217
Mesolongi0218Messolonghif301 00
Naupactus0219Náfpaktos
Neapoli0220Elaiófyto
Oiniades0221
Neochori
Panaitoliko0222
Skoutera
Parakampylia0224
Ano Agios Vlasios
Paravola0223
Platanos0225
Pyllini0226Simos
Stratos0227
Thermo0211
Thestieis0212
Kainourgio


Geographylogo.svgNedovršeni članak Prefektura Etolija-Akarnija koji govori o zemljopisu treba dopuniti. Dopunite ga prema pravilima Wikipedije.







Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Prefektura_Etolija-Akarnija&oldid=3968843"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.076","walltime":"0.104","ppvisitednodes":"value":415,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":15643,"limit":2097152,"templateargumentsize":"value":4681,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 46.228 1 -total"," 66.91% 30.929 1 Predložak:Grčke_prefekture"," 60.94% 28.170 1 Predložak:Navigacija"," 20.51% 9.480 1 Predložak:Tnavbar"," 19.73% 9.122 1 Predložak:Grčka_prefektura"," 12.86% 5.943 1 Predložak:Mrva-zemlj"," 8.22% 3.800 2 Predložak:·w"," 7.26% 3.356 1 Predložak:Mrva-"," 5.62% 2.597 3 Predložak:Qif"],"cachereport":"origin":"mw1325","timestamp":"20190409214820","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Prefektura Etolija-Akarnija","url":"https://hr.wikipedia.org/wiki/Prefektura_Etolija-Akarnija","sameAs":"http://www.wikidata.org/entity/Q202624","mainEntity":"http://www.wikidata.org/entity/Q202624","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2009-05-21T18:13:26Z","dateModified":"2013-03-16T21:57:32Z","image":"https://upload.wikimedia.org/wikipedia/commons/7/78/Nomos_Etoloakarnanias.png"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":107,"wgHostname":"mw1322"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...