Skip to main content

Kubični metar Pretvaranja u ine jedinice | Vidi još | Navigacijski izborniku

SI izvedene jedinice


jedinicaobujammeđunarodnom sustavu jedinica (SI)kockemetarvodegustoće°Catmosferskom tlakumasukgtonueksponentemarkupUsenetu












Kubični metar




Izvor: Wikipedija

(Preusmjereno s Km³)





Prijeđi na navigaciju
Prijeđi na pretraživanje


Kubični metar ili kubni metar (znak: m3) mjerna je jedinica za obujam (volumen) u međunarodnom sustavu jedinica (SI). Definira se kao obujam (volumen) kocke duljine stranica jedan metar:


1 m3 = 1 m·m·m

Uporaba naziva prostorni metar za jedinicu obujma u mjeriteljstvu je nezakonita, jer ovaj naziv ima posebno značenje obujma prostora u kojem su složena drva, gdje se obično računa da je jedan prostorni metar jednak 0,7 kubičnih metara drveta, tj. 1 prm = 0,7 m3.


Kubični metar sastoji se od 1 000 dm3.


Često korištene decimalne jedinice za obujam su:



  • kubični milimetar ili 1 mm3 = 1·10-9 kubičnih metara


  • kubični centimetar ili 1 cm3 = 1·10-6 kubičnih metara (sastoji se od 1 000 mm3)


  • kubični decimetar ili 1 dm3 = 1·10-3 kubičnih metara (sastoji se od 1 000 cm3)


  • kubični kilometar ili 1 km3 = 1·109 kubičnih metara


Pretvaranja u ine jedinice |


1 kubični metar je istovjetan:


  • 1.000 litara

  • ≈ 35,3 kubičnih stopa (približno); 1 kubična stopa = 0,028 316 846 592 m3 (točno)

  • ≈ 1,31 kubični jard (približno); 1 kubični jard = 0,764 554 857 984 m3 (točno)

  • ≈ 6,29 barela (približno); 1 barel = 0,158 987 294 928 m3 (točno)

Kubični metar čiste vode pri temperaturi maksimalne gustoće (3,98 °C) i standardnom atmosferskom tlaku (101,325 kPa) ima masu od 1000 kg, ili jednu tonu. Pri 0 °C, ledištu vode, masa je nešto manja, 999,972 kg.


Katkad se rabe kratice m3, m^3 ili m**3 kada eksponente nije moguće napisati ili markup nije moguć/dostupan (primjerice, u nekim tipkanim ispravama ili porukama na Usenetu).



Vidi još |


  • Metar

  • Četvorni metar

  • Litra

  • Predmeci (prefiksi) mjernih jedinica




Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Kubični_metar&oldid=5082862"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.040","walltime":"0.052","ppvisitednodes":"value":281,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":8116,"limit":2097152,"templateargumentsize":"value":1064,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 25.746 1 -total"," 88.39% 22.757 1 Predložak:SI_izvedene"," 78.57% 20.229 1 Predložak:Navigacija"," 28.49% 7.335 1 Predložak:Tnavbar"," 9.64% 2.483 4 Predložak:E"," 8.73% 2.247 2 Predložak:·w"],"cachereport":"origin":"mw1293","timestamp":"20190409183839","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":98,"wgHostname":"mw1320"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

Prove $a+2a^2+3a^31$. The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Proof QuestionCombinatorics question about additionBasic Algebra problem giving me problemsProving some trig identities.Revisiting algebra for the proofsSolving triangles with trig, word problemTeacher ResourceWhy is math so difficult for me?Quadratic equation - What is the value of x?I cannot comprehend ANY math. I cannot understand how things can be equal yet separate.