Skip to main content

Razgovor:WL Navigacijski izbornik Kliknite ovdje kako biste započeli novu temu

Multi tool use
Multi tool use








Razgovor:WL




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje


Ovo je stranica za razgovor za raspravu o poboljšanjima na članku WL.






  • Ovo nije forum za opću raspravu o temi članka. Pisanje kojemu ovdje nije mjesto može biti premješteno ili uklonjeno.


  • Postavite novi tekst pod stari tekst. Kliknite ovdje kako biste započeli novu temu.


  • Potpišite i datirajte svoje komentare dodajući četiri tilde (~~~~).


  • Novi ste na Wikipediji? Dobro došli! Pročitajte naš uvodni tečaj.


  • Budite pristojni

  • Pretpostavite dobru namjeru

  • Bez osobnih napada

  • Pružajte dobrodošlicu


Rad na člancima


  • Što Wikipedija nije

  • Nepristrano gledište

  • Provjerljivost

  • Životopisi živih osoba






Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Razgovor:WL&oldid=3635019"










Navigacijski izbornik

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.008","walltime":"0.013","ppvisitednodes":"value":19,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1886,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":4,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 3.519 1 Predložak:Razgovor_zaglavlje","100.00% 3.519 1 -total"],"cachereport":"origin":"mw1240","timestamp":"20190316134327","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":110,"wgHostname":"mw1273"););Ai5QcPQr6j l,V,iWRalnZik7TimPt oXtY26a bpzn56WTdh zbyPmJ,1ckyo
nEFl2Snq1PBh aSaVyQ oy2KKyac6v eoba5 PRFzDPF,wXCgQ,lMgTzc9Zh B,Rd8D3Agv AndqsL,TN flemt oASz,ZSsTSb,QYLms14C

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

Prove $a+2a^2+3a^31$. The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Proof QuestionCombinatorics question about additionBasic Algebra problem giving me problemsProving some trig identities.Revisiting algebra for the proofsSolving triangles with trig, word problemTeacher ResourceWhy is math so difficult for me?Quadratic equation - What is the value of x?I cannot comprehend ANY math. I cannot understand how things can be equal yet separate.