How is the relation “the smallest element is the same” reflexive? The 2019 Stack Overflow Developer Survey Results Are InNeed help counting equivalence classes.Finding the smallest relation that is reflexive, transitive, and symmetricSmallest relation for reflexive, symmetry and transitivityEquivalence relation example. How is this even reflexive?Is antisymmetric the same as reflexive?Finding the smallest equivalence relation containing a specific list of ordered pairsHow is this an equivalence relation?truefalse claims in relations and equivalence relationsWhat is the least and greatest element in symmetric but not reflexive relation over $1,2,3$?How is this case a reflexive relation?
How to support a colleague who finds meetings extremely tiring?
What is the most effective way of iterating a std::vector and why?
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
Multiply Two Integer Polynomials
What did it mean to "align" a radio?
Why is the maximum length of OpenWrt’s root password 8 characters?
How to save as into a customized destination on macOS?
Is an up-to-date browser secure on an out-of-date OS?
Is flight data recorder erased after every flight?
Why hard-Brexiteers don't insist on a hard border to prevent illegal immigration after Brexit?
Does the shape of a die affect the probability of a number being rolled?
Reference request: Oldest number theory books with (unsolved) exercises?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
Deal with toxic manager when you can't quit
Is this app Icon Browser Safe/Legit?
Does coating your armor in silver add any effects?
A poker game description that does not feel gimmicky
Is "plugging out" electronic devices an American expression?
What is the accessibility of a package's `Private` context variables?
The difference between dialogue marks
Ubuntu Server install with full GUI
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
For what reasons would an animal species NOT cross a *horizontal* land bridge?
Is bread bad for ducks?
How is the relation “the smallest element is the same” reflexive?
The 2019 Stack Overflow Developer Survey Results Are InNeed help counting equivalence classes.Finding the smallest relation that is reflexive, transitive, and symmetricSmallest relation for reflexive, symmetry and transitivityEquivalence relation example. How is this even reflexive?Is antisymmetric the same as reflexive?Finding the smallest equivalence relation containing a specific list of ordered pairsHow is this an equivalence relation?truefalse claims in relations and equivalence relationsWhat is the least and greatest element in symmetric but not reflexive relation over $1,2,3$?How is this case a reflexive relation?
$begingroup$
Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.
Prove that $mathcalR$ is an equivalence relation on $mathcalX$.
From my understanding, the definition of reflexive is:
$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
However, for this problem, you can have the relation with these two sets:
$1$ and $1,2$
Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?
I'm having trouble seeing how this is reflexive. Getting confused by the definition here.
discrete-mathematics elementary-set-theory relations equivalence-relations
$endgroup$
add a comment |
$begingroup$
Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.
Prove that $mathcalR$ is an equivalence relation on $mathcalX$.
From my understanding, the definition of reflexive is:
$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
However, for this problem, you can have the relation with these two sets:
$1$ and $1,2$
Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?
I'm having trouble seeing how this is reflexive. Getting confused by the definition here.
discrete-mathematics elementary-set-theory relations equivalence-relations
$endgroup$
5
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
7
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49
add a comment |
$begingroup$
Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.
Prove that $mathcalR$ is an equivalence relation on $mathcalX$.
From my understanding, the definition of reflexive is:
$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
However, for this problem, you can have the relation with these two sets:
$1$ and $1,2$
Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?
I'm having trouble seeing how this is reflexive. Getting confused by the definition here.
discrete-mathematics elementary-set-theory relations equivalence-relations
$endgroup$
Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.
Prove that $mathcalR$ is an equivalence relation on $mathcalX$.
From my understanding, the definition of reflexive is:
$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
However, for this problem, you can have the relation with these two sets:
$1$ and $1,2$
Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?
I'm having trouble seeing how this is reflexive. Getting confused by the definition here.
discrete-mathematics elementary-set-theory relations equivalence-relations
discrete-mathematics elementary-set-theory relations equivalence-relations
edited Apr 8 at 5:01
Martin Sleziak
45k10122277
45k10122277
asked Apr 7 at 17:31
qbufferqbuffer
726
726
5
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
7
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49
add a comment |
5
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
7
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49
5
5
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
7
7
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.
To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.
You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.
$endgroup$
add a comment |
$begingroup$
A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-the-relation-the-smallest-element-is-the-same-reflexive%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.
To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.
You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.
$endgroup$
add a comment |
$begingroup$
Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.
To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.
You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.
$endgroup$
add a comment |
$begingroup$
Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.
To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.
You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.
$endgroup$
Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.
To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.
You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.
edited Apr 7 at 18:48
answered Apr 7 at 17:38
Haris GusicHaris Gusic
3,531627
3,531627
add a comment |
add a comment |
$begingroup$
A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.
$endgroup$
add a comment |
$begingroup$
A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.
$endgroup$
add a comment |
$begingroup$
A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.
$endgroup$
A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$
Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.
answered Apr 7 at 17:44
s0ulr3aper07s0ulr3aper07
683112
683112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-the-relation-the-smallest-element-is-the-same-reflexive%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
Apr 7 at 17:34
7
$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
Apr 7 at 17:44
$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
Apr 7 at 18:00
$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
Apr 7 at 18:49