Skip to main content

Agrafiotis Vanjske poveznice | Navigacijski izbornikO rijeci Agrafiotis na portalu regije Agrafa

Rijeke u GrčkojJonski slijev


GrčkirijekaPrefekturi EuritanijiGrčkojAhelosPindskom gorjuKremastaAhelosMegdova1967












Agrafiotis




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje



















Agrafiotis
Αγραφιώτης

Agrafiotis river 1.JPG

Duljina
58 km

Nadm. visina izvora
oko 2000 m

Izvor
kod mjesta Deldimi, oblast Agrafa u Pindskom gorju

Ušće
umjetno jezero Kremasta

Pritoci
Marisiotis, Seliotiko, Melisorema, Kvatesos, Asprorema, Direma

Države

Grčka

Slijev
Jonski

Ulijeva se u
umjetno jezero Kremasta

Agrafiotis (Grčki: Αγραφιώτης, Agrafiotis) je rijeka u Prefekturi Euritaniji u Grčkoj.
Agrafiotis je lijeva i najveća pritoka rijeke Ahelos, izvire na padinama planinskog područja Agrafa (po njoj je dobila ime) u Pindskom gorju. Od svog izvora na sjeveru Euritanije Agrafiotis teče na jug kroz kanjon sve do svog uvira u umjetno jezero Kremasta u koje sad utječe i rijeka Ahelos i Megdova.


Jezero Kremasta počelo se graditi 1967. a dovršeno je sredinom 1970-ih, ono je najveće umjetno jezero u Grčkoj.



Vanjske poveznice |



  • O rijeci Agrafiotis na portalu regije Agrafa (grč.)



Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Agrafiotis&oldid=4530063"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.020","walltime":"0.036","ppvisitednodes":"value":143,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":2068,"limit":2097152,"templateargumentsize":"value":548,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 16.992 1 -total"," 62.14% 10.559 1 Predložak:Rijeka"," 37.05% 6.296 1 Predložak:El_icon"," 11.29% 1.919 1 Predložak:Jezikk"],"cachereport":"origin":"mw1264","timestamp":"20190409140900","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Agrafiotis","url":"https://hr.wikipedia.org/wiki/Agrafiotis","sameAs":"http://www.wikidata.org/entity/Q395923","mainEntity":"http://www.wikidata.org/entity/Q395923","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2010-11-23T22:43:21Z","dateModified":"2015-05-19T04:19:20Z","image":"https://upload.wikimedia.org/wikipedia/commons/a/ae/Agrafiotis_river_1.JPG"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":97,"wgHostname":"mw1249"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...