Compute: $mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$ The 2019 Stack Overflow Developer Survey Results Are InEquivalent to $beginalignint cosleft(2xright) dxendalign$?Evaluate $int frac1+cos(x)sin^2(x),operatorname d!x$Compute $int x^2 cos fracx2 mathrmdx$Evaluating: $int 3xsinleft(frac x4right) , dx$.Find $mathcalLleftt e^2tcosleft(5tright)right$For a stopping time $T$, prove that $X^T_t = mathbbEleft[X_Tmid mathcalF_tright]$Closed form for $intfracleft((x + i) betaright)^beta x^beta - 2(x^2 + 1)^beta expleft(-fracalphaA xright) , mathrmd x$Evaluate $int_0^1 fracln left(1+x+x^2+cdots +x^n right)xdx$How to find $mathbbPleft(int_0^1W_tdt>dfrac2sqrt3right)$?Find $(1-p)logleft [int^infty_0 [f(x)]^pdxright]$

Time travel alters history but people keep saying nothing's changed

Does the shape of a die affect the probability of a number being rolled?

What did it mean to "align" a radio?

Where to refill my bottle in India?

Apparent duplicates between Haynes service instructions and MOT

Origin of "cooter" meaning "vagina"

Is "plugging out" electronic devices an American expression?

Is there a symbol for a right arrow with a square in the middle?

The difference between dialogue marks

When should I buy a clipper card after flying to OAK?

Is flight data recorder erased after every flight?

Return to UK after having been refused entry years ago

Falsification in Math vs Science

How can I autofill dates in Excel excluding Sunday?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Is this app Icon Browser Safe/Legit?

What is the accessibility of a package's `Private` context variables?

Are there incongruent pythagorean triangles with the same perimeter and same area?

Delete all lines which don't have n characters before delimiter

Why not take a picture of a closer black hole?

Right tool to dig six foot holes?

Is there any way to tell whether the shot is going to hit you or not?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Button changing it's text & action. Good or terrible?



Compute: $mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$



The 2019 Stack Overflow Developer Survey Results Are InEquivalent to $beginalignint cosleft(2xright) dxendalign$?Evaluate $int frac1+cos(x)sin^2(x),operatorname d!x$Compute $int x^2 cos fracx2 mathrmdx$Evaluating: $int 3xsinleft(frac x4right) , dx$.Find $mathcalLleftt e^2tcosleft(5tright)right$For a stopping time $T$, prove that $X^T_t = mathbbEleft[X_Tmid mathcalF_tright]$Closed form for $intfracleft((x + i) betaright)^beta x^beta - 2(x^2 + 1)^beta expleft(-fracalphaA xright) , mathrmd x$Evaluate $int_0^1 fracln left(1+x+x^2+cdots +x^n right)xdx$How to find $mathbbPleft(int_0^1W_tdt>dfrac2sqrt3right)$?Find $(1-p)logleft [int^infty_0 [f(x)]^pdxright]$










3












$begingroup$


In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$




$textbfAttempt:$



$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$




Then, I couldn't continue. What would be the next steps?










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
    $endgroup$
    – dan_fulea
    Apr 7 at 18:01
















3












$begingroup$


In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$




$textbfAttempt:$



$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$




Then, I couldn't continue. What would be the next steps?










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
    $endgroup$
    – dan_fulea
    Apr 7 at 18:01














3












3








3


2



$begingroup$


In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$




$textbfAttempt:$



$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$




Then, I couldn't continue. What would be the next steps?










share|cite|improve this question









$endgroup$




In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$




$textbfAttempt:$



$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$




Then, I couldn't continue. What would be the next steps?







integration stochastic-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 7 at 17:54









QFiQFi

615316




615316







  • 2




    $begingroup$
    Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
    $endgroup$
    – dan_fulea
    Apr 7 at 18:01













  • 2




    $begingroup$
    Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
    $endgroup$
    – dan_fulea
    Apr 7 at 18:01








2




2




$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01





$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01











1 Answer
1






active

oldest

votes


















3












$begingroup$

Thanks to @dan_fulea hint, here are the next steps to the solution:



$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178555%2fcompute-mathbbe-left-left-dfrac1t-intt-0w-tdt-right2-right%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Thanks to @dan_fulea hint, here are the next steps to the solution:



    $$
    beginalign
    mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
    &= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
    &= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
    &= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
    &= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
    &= dfrac1T^2times left(dfracT^32-dfracT^36right)\
    &= dfracT3
    endalign
    $$






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      Thanks to @dan_fulea hint, here are the next steps to the solution:



      $$
      beginalign
      mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
      &= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
      &= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
      &= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
      &= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
      &= dfrac1T^2times left(dfracT^32-dfracT^36right)\
      &= dfracT3
      endalign
      $$






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Thanks to @dan_fulea hint, here are the next steps to the solution:



        $$
        beginalign
        mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
        &= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
        &= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
        &= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
        &= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
        &= dfrac1T^2times left(dfracT^32-dfracT^36right)\
        &= dfracT3
        endalign
        $$






        share|cite|improve this answer









        $endgroup$



        Thanks to @dan_fulea hint, here are the next steps to the solution:



        $$
        beginalign
        mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
        &= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
        &= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
        &= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
        &= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
        &= dfrac1T^2times left(dfracT^32-dfracT^36right)\
        &= dfracT3
        endalign
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 7 at 18:44









        QFiQFi

        615316




        615316



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178555%2fcompute-mathbbe-left-left-dfrac1t-intt-0w-tdt-right2-right%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj

            Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

            WordPress Information needed