Compute: $mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$ The 2019 Stack Overflow Developer Survey Results Are InEquivalent to $beginalignint cosleft(2xright) dxendalign$?Evaluate $int frac1+cos(x)sin^2(x),operatorname d!x$Compute $int x^2 cos fracx2 mathrmdx$Evaluating: $int 3xsinleft(frac x4right) , dx$.Find $mathcalLleftt e^2tcosleft(5tright)right$For a stopping time $T$, prove that $X^T_t = mathbbEleft[X_Tmid mathcalF_tright]$Closed form for $intfracleft((x + i) betaright)^beta x^beta - 2(x^2 + 1)^beta expleft(-fracalphaA xright) , mathrmd x$Evaluate $int_0^1 fracln left(1+x+x^2+cdots +x^n right)xdx$How to find $mathbbPleft(int_0^1W_tdt>dfrac2sqrt3right)$?Find $(1-p)logleft [int^infty_0 [f(x)]^pdxright]$
Time travel alters history but people keep saying nothing's changed
Does the shape of a die affect the probability of a number being rolled?
What did it mean to "align" a radio?
Where to refill my bottle in India?
Apparent duplicates between Haynes service instructions and MOT
Origin of "cooter" meaning "vagina"
Is "plugging out" electronic devices an American expression?
Is there a symbol for a right arrow with a square in the middle?
The difference between dialogue marks
When should I buy a clipper card after flying to OAK?
Is flight data recorder erased after every flight?
Return to UK after having been refused entry years ago
Falsification in Math vs Science
How can I autofill dates in Excel excluding Sunday?
For what reasons would an animal species NOT cross a *horizontal* land bridge?
Is this app Icon Browser Safe/Legit?
What is the accessibility of a package's `Private` context variables?
Are there incongruent pythagorean triangles with the same perimeter and same area?
Delete all lines which don't have n characters before delimiter
Why not take a picture of a closer black hole?
Right tool to dig six foot holes?
Is there any way to tell whether the shot is going to hit you or not?
How to answer pointed "are you quitting" questioning when I don't want them to suspect
Button changing it's text & action. Good or terrible?
Compute: $mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$
The 2019 Stack Overflow Developer Survey Results Are InEquivalent to $beginalignint cosleft(2xright) dxendalign$?Evaluate $int frac1+cos(x)sin^2(x),operatorname d!x$Compute $int x^2 cos fracx2 mathrmdx$Evaluating: $int 3xsinleft(frac x4right) , dx$.Find $mathcalLleftt e^2tcosleft(5tright)right$For a stopping time $T$, prove that $X^T_t = mathbbEleft[X_Tmid mathcalF_tright]$Closed form for $intfracleft((x + i) betaright)^beta x^beta - 2(x^2 + 1)^beta expleft(-fracalphaA xright) , mathrmd x$Evaluate $int_0^1 fracln left(1+x+x^2+cdots +x^n right)xdx$How to find $mathbbPleft(int_0^1W_tdt>dfrac2sqrt3right)$?Find $(1-p)logleft [int^infty_0 [f(x)]^pdxright]$
$begingroup$
In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$
$textbfAttempt:$
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$
Then, I couldn't continue. What would be the next steps?
integration stochastic-calculus
$endgroup$
add a comment |
$begingroup$
In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$
$textbfAttempt:$
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$
Then, I couldn't continue. What would be the next steps?
integration stochastic-calculus
$endgroup$
2
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01
add a comment |
$begingroup$
In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$
$textbfAttempt:$
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$
Then, I couldn't continue. What would be the next steps?
integration stochastic-calculus
$endgroup$
In an interview I have been asked to solve:
$$mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]$$
$textbfAttempt:$
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right]
&= dfrac1T^2mathbbEleft[left(int^T_0W_tdtright)left(int^T_0W_uduright)right]\
&= dfrac1T^2mathbbEleft[int^T_0int^T_0W_tW_udtduright]\
&= dfrac1T^2int^T_0int^T_0mathbbEleft[W_tW_uright]dtdu \
&= dfrac1T^2int^T_0int^T_0min(u,t),dtdu
endalign
$$
Then, I couldn't continue. What would be the next steps?
integration stochastic-calculus
integration stochastic-calculus
asked Apr 7 at 17:54
QFiQFi
615316
615316
2
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01
add a comment |
2
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01
2
2
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Thanks to @dan_fulea hint, here are the next steps to the solution:
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178555%2fcompute-mathbbe-left-left-dfrac1t-intt-0w-tdt-right2-right%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Thanks to @dan_fulea hint, here are the next steps to the solution:
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$
$endgroup$
add a comment |
$begingroup$
Thanks to @dan_fulea hint, here are the next steps to the solution:
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$
$endgroup$
add a comment |
$begingroup$
Thanks to @dan_fulea hint, here are the next steps to the solution:
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$
$endgroup$
Thanks to @dan_fulea hint, here are the next steps to the solution:
$$
beginalign
mathbbEleft[left(dfrac1Tint^T_0W_tdtright)^2right] &= dfrac1T^2int^T_0int^T_0min(u,t),dtdu \
&= dfrac1T^2int^T_0left(int^u_0min(u,t),dt+int^T_umin(u,t),dtright)du \
&= dfrac1T^2int^T_0left(int^u_0t,dt+int^T_uu,dtright)du\
&= dfrac1T^2int^T_0left(dfracu^22+u(T-u)right)du\
&= dfrac1T^2int^T_0left(uT-dfracu^22right)du\
&= dfrac1T^2times left(dfracT^32-dfracT^36right)\
&= dfracT3
endalign
$$
answered Apr 7 at 18:44
QFiQFi
615316
615316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178555%2fcompute-mathbbe-left-left-dfrac1t-intt-0w-tdt-right2-right%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Assuming the first integral is done on $u$, split the second integral as an integral on $[0,u]$ and one on $[u,T]$
$endgroup$
– dan_fulea
Apr 7 at 18:01