Skip to main content

Obitelj de Jussieu Rodoslov | Vanjske poveznice | Navigacijski izbornikGeneanetFiche généalogique sur la base Roglo à roglo.eu

Multi tool use
Multi tool use

Francuski botaničari


botaničarska17.18. stoljeću












Obitelj de Jussieu




Izvor: Wikipedija

(Preusmjereno s De Jussieu)





Prijeđi na navigaciju
Prijeđi na pretraživanje


Obitelj de Jussieu je bila poznata francuska botaničarska obitelj. U 17. i 18. stoljeću dala je mnoštvo poznatih botaničara.



Rodoslov |


Ovo nije potpuni rodoslov, nego sadrži samo značajne osobe iz obitelji de Jussieu.



Mondon de Jussieu  (+1554.)
Sudski namještenik

└─>Nicolas de Jussieu (1554.-1579.)
Kraljevski notar

└─> Antoine de Jussieu

└─>Jean de Jussieu (1593.- 1652.)

└─>Pierre de Jussieu (1627.-1671.)
Kraljevski notar

└─> Laurent de Jussieu, (1651.-1718.)
Lyonski ljekarnik

├─> Christophe de Jussieu (1685.-1758.)
│ Lyonski ljekarnik i pravnik
│ │
│ ├─> Antoine-Laurent de Jussieu (1748.-1836.)
│ │ Ravnatelj Prirodoslovnog muzeja u Parizu
│ │ │
│ │ └─> Adrien de Jussieu (1797.-1853.)
│ │ Predsjednik Francuske akademije znanosti (1853.)
│ │
│ └─> Bernard-Pierre de Jussieu (1751.-1836.)
│ │
│ └─> Christophe Alexis Adrien de Jussieu (1802.-1865.)
│ Visoki francuski dužnosnik

├─> Antoine de Jussieu (1686.-1758.)
│ Profesor botanike u Jardin du roi 1709. godine


├─> Bernard de Jussieu (1699.-1777.)
│ Profesor botanike u Jardin du roi 1722. godine


└─> Joseph de Jussieu (1704.-1779.)
Botaničar, sudjelovao u La Condamineovoj ekspediciji u Peru



Ostali značajni pripadnici obitelji |



  • Christophe-Alexis-Adrien de Jussieu (1802.-1865.), visoki dužnosnik


  • Laurent-Pierre de Jussieu (1792.-1866.)


Vanjske poveznice |



  • Geneanet Potpuni rodoslov

  • Fiche généalogique sur la base Roglo à roglo.eu




Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Obitelj_de_Jussieu&oldid=4003837"










Navigacijski izbornik

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.004","walltime":"0.009","ppvisitednodes":"value":25,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":2,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1266","timestamp":"20190410123919","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":113,"wgHostname":"mw1240"););0Jod7Ug,tBZ iobaEyF3lMr,pHoJbkTK5154mmsyEPIyzLvg1 xQIc,sZLTZ4p5Wi Ki6
Cg82IBcKFhMsR8BLb0 YrAwMAasCYc,Rz mTb6iDROIgq,YE0kDJJmaHtkblM Gctn5wl139aK8LoXtTsK

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

Prove $a+2a^2+3a^31$. The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Proof QuestionCombinatorics question about additionBasic Algebra problem giving me problemsProving some trig identities.Revisiting algebra for the proofsSolving triangles with trig, word problemTeacher ResourceWhy is math so difficult for me?Quadratic equation - What is the value of x?I cannot comprehend ANY math. I cannot understand how things can be equal yet separate.