Skip to main content

No label defined (Q1049889) StatementsIdentifiersSitelinksNavigation menu

Multi tool use
Multi tool use









No label defined
(Q1049889)




From Wikidata






Jump to navigation
Jump to search





open cluster



edit









LanguageLabelDescriptionAlso known as
English


No label defined




open cluster






    Statements





    instance of
















    open cluster









    1 reference






    stated in





    SIMBAD















    image



















    NGC 2588 DSS.jpg
    1,205 × 894; 370 KB










    1 reference







    imported from Wikimedia project





    French Wikipedia









    Wikimedia import URL





    https://fr.wikipedia.org/w/index.php?title=NGC_2588&oldid=148507933
















    catalog code
















    NGC 2588








    catalog





    New General Catalogue









    1 reference






    stated in





    SIMBAD















    discoverer or inventor
















    John Frederick William Herschel









    1 reference






    imported from Wikimedia project





    Esperanto Wikipedia















    time of discovery or invention
















    16 February 1836Gregorian









    1 reference






    imported from Wikimedia project





    Polish Wikipedia















    constellation
















    Puppis









    1 reference






    stated in





    VizieR















    apparent magnitude
















    11.8









    1 reference






    imported from Wikimedia project





    Russian Wikipedia














    Identifiers





    SIMBAD ID
















    NGC 2588









    1 reference






    imported from Wikimedia project





    Polish Wikipedia















    New General Catalogue ID
















    2588









    0 references













     








    edit






    • azwiki
      NGC 2588



    • bewiki
      NGC 2588



    • bswiki
      NGC 2588



    • eowiki
      NGC 2588



    • frwiki
      NGC 2588



    • hrwiki
      NGC 2588



    • kkwiki
      NGC 2588



    • mkwiki
      NGC 2588



    • nlwiki
      NGC 2588



    • plwiki
      NGC 2588



    • ptwiki
      NGC 2588



    • ruwiki
      NGC 2588



    • shwiki
      NGC 2588



    • skwiki
      NGC 2588



    • srwiki
      NGC 2588



    • trwiki
      NGC 2588



    • ukwiki
      NGC 2588



    • uzwiki
      NGC 2588








    edit











      edit











        edit











          edit











            edit











              edit











                edit











                  edit













                    Retrieved from "https://www.wikidata.org/w/index.php?title=Q1049889&oldid=869785527"










                    Navigation menu
























                    (window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":135,"wgHostname":"mw1329"););rPc9TLDZ7NKqdu RL19aHyfjViaf3vy sHpChhUQ1HqnP,802m1ZJn9V,m
                    cOEWsb0LPaN4IGMJZ

                    Popular posts from this blog

                    Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

                    What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

                    End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...