Skip to main content

Selo Vanjske poveznice | Navigacijski izbornikSlike afričkih sela

Multi tool use
Multi tool use

SelaRuralna geografija


ljudskihsijelonaselje












Selo




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje



Disambig.svgOvo je glavno značenje pojma Selo. Za druga značenja, pogledajte Selo (Čabar), gradsko naselje Čabra.



Povijesno selo Holašovice u Južnoj Češkoj



Selo je uz grad jedno od dva osnovna tipa ljudskih naselja. Riječ selo je praslavenskog postanja iz korijena sed- (zajednički s drugim riječima:sijelo, naselje i dr.) koji je s duljenjem prešao u sjesti. Definira se na dva načina:


  • Pored grada i mješovitog naselja (koje nastaje razvojem sela), kao polifunkcijskih naselja, selo se može definirati kao monofunkcijsko naselje. To znači da je to naselje u kojem prevladavaju primarne djelatnosti, ponajprije poljoprivreda. Neka sela pored glavnog mogu imati i nekoliko sporednih zanimanja, primjerice zdravstvo i školstvo.

  • Po drugoj definiciji selo je svako naselje s malim brojem stanovnika.

Zaselak je selo s tek nekoliko kuća.


Znamenita svjetska sela su:






  • Flag of Austria.svg Austrija: Hallstatt


  • Flag of Belgium (civil).svg Belgija: Spiennes


  • Flag of the Czech Republic.svg Češka: Holašovice


  • Flag of Estonia.svg Estonija: Kihnu


  • Flag of Japan.svg Japan: Shirakawa-go i Gokayama



  • Flag of South Korea.svg Južna Koreja: Hahoe i Yangdong


  • Flag of the People's Republic of China.svg Kina: Xidi i Hongcun


  • Flag of Lithuania.svg Litva: Kernavė


  • Flag of Hungary.svg Mađarska: Hollókő


  • Flag of Slovakia.svg Slovačka: Vlkolínec


Vanjske poveznice |


  • Slike afričkih sela



Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Selo&oldid=4548967"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.080","walltime":"0.115","ppvisitednodes":"value":509,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1481,"limit":2097152,"templateargumentsize":"value":736,"limit":2097152,"expansiondepth":"value":5,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 67.332 1 -total"," 16.03% 10.794 1 Predložak:ZD+X/A"," 15.54% 10.466 1 Predložak:ZD+X/S"," 11.14% 7.499 1 Predložak:ZD+X/B"," 10.34% 6.963 1 Predložak:ZD+X/M"," 9.69% 6.525 1 Predložak:ZD+X/K"," 8.90% 5.995 10 Predložak:Switch"," 8.45% 5.688 2 Predložak:ZD+X/J"," 8.01% 5.395 1 Predložak:ZD+X/L"," 6.55% 4.411 1 Predložak:ZD+X/Č"],"cachereport":"origin":"mw1327","timestamp":"20190409152940","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Selo","url":"https://hr.wikipedia.org/wiki/Selo","sameAs":"http://www.wikidata.org/entity/Q532","mainEntity":"http://www.wikidata.org/entity/Q532","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-12-11T21:23:39Z","dateModified":"2015-06-17T06:17:05Z","image":"https://upload.wikimedia.org/wikipedia/commons/7/79/Hola%C5%A1ovice.jpg","headline":"malo mjesto"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":125,"wgHostname":"mw1264"););Zbj,WQKETJ Rbx5W8h2j4tUB6,2eXq,X2aSi,KVD 2VejugXaEXa,Zo3mJOiD Xt4UCZd9O1H
9IrdelVrTty4 NHYqvt4KG 2dyU,EssuzZWk2vYqslkzLIuY

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...