Banach space and Hilbert space topology The 2019 Stack Overflow Developer Survey Results Are InShowing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space

Dropping list elements from nested list after evaluation

If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?

How did passengers keep warm on sail ships?

Output the Arecibo Message

Getting crown tickets for Statue of Liberty

Can a flute soloist sit?

Why was M87 targeted for the Event Horizon Telescope instead of Sagittarius A*?

How can I define good in a religion that claims no moral authority?

Loose spokes after only a few rides

The difference between dialogue marks

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

What is this business jet?

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

APIPA and LAN Broadcast Domain

Why can't devices on different VLANs, but on the same subnet, communicate?

Geography at the pixel level

Is it okay to consider publishing in my first year of PhD?

What does もの mean in this sentence?

How do PCB vias affect signal quality?

Star Trek - X-shaped Item on Regula/Orbital Office Starbases

Worn-tile Scrabble

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Why couldn't they take pictures of a closer black hole?

Can withdrawing asylum be illegal?



Banach space and Hilbert space topology



The 2019 Stack Overflow Developer Survey Results Are InShowing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space










2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    Apr 7 at 21:35






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    Apr 7 at 21:37















2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    Apr 7 at 21:35






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    Apr 7 at 21:37













2












2








2





$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$




Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?







general-topology functional-analysis hilbert-spaces banach-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 7 at 21:37









Henno Brandsma

116k349127




116k349127










asked Apr 7 at 21:30









user156213user156213

69238




69238







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    Apr 7 at 21:35






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    Apr 7 at 21:37












  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    Apr 7 at 21:35






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    Apr 7 at 21:37







1




1




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35




1




1




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37










1 Answer
1






active

oldest

votes


















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    Apr 8 at 0:22






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    Apr 8 at 11:42











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    Apr 8 at 0:22






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    Apr 8 at 11:42















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    Apr 8 at 0:22






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    Apr 8 at 11:42













7












7








7





$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$



Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 7 at 21:36









Henno BrandsmaHenno Brandsma

116k349127




116k349127











  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    Apr 8 at 0:22






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    Apr 8 at 11:42
















  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    Apr 8 at 0:22






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    Apr 8 at 11:42















$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22




$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22




2




2




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
Apr 8 at 11:42




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
Apr 8 at 11:42

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

WordPress Information needed

Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj