Skip to main content

NGC 2795 IzvoriVanjske povezniceNavigacijski izbornikThe Historically Corrected New General CatalogueNGC/IC ProjectSEDS: NGC 2795uDopunite ga

U izradi, AstronomijaNGC katalogGalaksije u Raku


galaksijazviježđuRakuNGC 2771NGC 2772NGC 2773NGC 2774NGC 2775NGC 2776NGC 2777NGC 2778NGC 2779NGC 2780NGC 2781NGC 2782NGC 2783NGC 2784NGC 2785NGC 2786NGC 2787NGC 2788NGC 2789NGC 2790NGC 2791NGC 2792NGC 2793NGC 2794NGC 2796NGC 2797NGC 2798NGC 2799NGC 2800NGC 2801NGC 2802NGC 2803NGC 2804NGC 2805NGC 2806NGC 2807NGC 2808NGC 2809NGC 2810NGC 2811NGC 2812NGC 2813NGC 2814NGC 2815NGC 2816NGC 2817NGC 2818NGC 2819NGC 2820P space.png












NGC 2795




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje














NGC 2795
galaksija



Otkriće

Položaj
Epoha J2000.0[1]

Zviježđe
Rak

Rektascenzija
09h 16m 03.9s

Deklinacija
+17° 37′ 41″

Izgled na našem nebu[1]

Prividna magnituda
12,9
Prividne dimenzije (V)
1.4'x1.0'

Stvarne osobine objekta

Ostalo
Druge oznake[1]UGC 4887, MCG +03-24-020, CGCG 091.039, PGC 26143

NGC 2795 je galaksija u zviježđu Raku.


Izvori




  1. 1,01,11,2 The Historically Corrected New General Catalogue @ NGC/IC Project


Vanjske poveznice


  • SEDS: NGC 2795


P space.pngNedovršeni članak NGC 2795 koji govori o astronomiji treba dopuniti. Dopunite ga prema pravilima Wikipedije.









Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=NGC_2795&oldid=3960623"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.084","walltime":"0.117","ppvisitednodes":"value":772,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":15884,"limit":2097152,"templateargumentsize":"value":5316,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":833,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 88.357 1 -total"," 40.49% 35.778 1 Predložak:Objekt_dubokog_svemira"," 39.61% 35.000 1 Predložak:Navigacija_NGC"," 31.01% 27.397 1 Predložak:Navigacija"," 9.56% 8.443 1 Predložak:Izvori"," 8.79% 7.766 1 Predložak:Tnavbar"," 6.59% 5.827 1 Predložak:Mrva-astro"," 6.25% 5.518 1 Predložak:DEC"," 5.71% 5.041 1 Predložak:RA"," 3.76% 3.324 1 Predložak:Mrva-"],"cachereport":"origin":"mw1306","timestamp":"20190409104129","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":98,"wgHostname":"mw1241"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...