Skip to main content

前369年 大事记 出生 逝世 导航菜单

Multi tool use
Multi tool use

前369年前360年代前4世纪各年













前369年




维基百科,自由的百科全书






跳到导航
跳到搜索













千纪:

前1千纪

世纪:

前5世纪 | 前4世纪 | 前3世纪

年代:

前390年代 | 前380年代 | 前370年代 | 前360年代 | 前350年代 | 前340年代 | 前330年代

年份:

前374年 | 前373年 | 前372年 | 前371年 | 前370年 | 前369年 | 前368年 | 前367年 | 前366年 | 前365年 | 前364年

纪年:

周烈王七年 魯共公十四年 田齊桓公六年 晉孝公二十年 趙成侯六年 魏惠王元年 韓共侯五年 秦獻公十六年 楚宣王元年 宋剔成君元年 衛聲公四年 燕後桓公四年 越王無余四年 中山桓公十二年


大事记


  • 长城始建


  • 周烈王崩,弟周顯王扁立。


  • 濁澤之戰,魏罃與魏緩爭位,韓懿侯、趙成侯引兵攻魏,韓懿侯主張立兩人為君,把魏國降為韓、趙的藩屬。而趙成侯主張立公中緩而瓜分魏國之地,兩國意見不合而退兵,魏罃趁機襲殺魏緩,自立為國君,是為魏惠王。


出生



  • 莊周,戰國時代道家代表人物。


逝世



Wikisource-logo.svg

參見維基文庫中
提及前369年的原始文獻





取自“https://zh.wikipedia.org/w/index.php?title=前369年&oldid=42246205”










导航菜单



























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.076","walltime":"0.086","ppvisitednodes":"value":1211,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":2088,"limit":2097152,"templateargumentsize":"value":3062,"limit":2097152,"expansiondepth":"value":7,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 32.183 1 -total"," 91.33% 29.394 1 Template:YearTOC"," 67.57% 21.745 22 Template:CalcBcDate"," 6.93% 2.230 1 Template:Wikisource_year_mention"],"cachereport":"origin":"mw1255","timestamp":"20190331224528","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":138,"wgHostname":"mw1256"););
cYgOWDXzYDe9OD8n2E Myov 1Y0jmXnH8Gq 0V486 lD26tAJZ yIlHeqd7RF,ajw1tP9CoGheTJcc
3Ir,l1YV1 f8C6KEILTDr2PZDe0w

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

Prove $a+2a^2+3a^31$. The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Proof QuestionCombinatorics question about additionBasic Algebra problem giving me problemsProving some trig identities.Revisiting algebra for the proofsSolving triangles with trig, word problemTeacher ResourceWhy is math so difficult for me?Quadratic equation - What is the value of x?I cannot comprehend ANY math. I cannot understand how things can be equal yet separate.