Using Laplace Transforms to solve the PDE $fracpartialthetapartial t=kfracpartial^2thetapartial x^2$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Inverse Laplace of an exponential function $exp-xsqrt(s+h)/k$Inverse Laplace transform of a given functionHeaviside function in the function whose Laplace transformation is $e^-(gamma+s)/[(s+gamma)^2+b^2]$Solving forced undamped vibration using Laplace transformsSolve non-linear pdeUsing Laplace Transforms to solve a PDEHeat equation - solving with Laplace transformShow that the following is a solution to the pdeHelp Solving Textbook Heat Conduction Laplace Transforms PDE ProblemHelp Solving Textbook Heat Conduction Laplace Transforms PDE Problem 2Solving the canonical form of an elliptic PDE [HEAT EQUATION]

Deal with toxic manager when you can't quit

Was credit for the black hole image misappropriated?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Does Parliament need to approve the new Brexit delay to 31 October 2019?

Why are PDP-7-style microprogrammed instructions out of vogue?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Why doesn't a hydraulic lever violate conservation of energy?

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

should truth entail possible truth

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Can each chord in a progression create its own key?

Are there continuous functions who are the same in an interval but differ in at least one other point?

Homework question about an engine pulling a train

What force causes entropy to increase?

Why doesn't shell automatically fix "useless use of cat"?

What other Star Trek series did the main TNG cast show up in?

Keeping a retro style to sci-fi spaceships?

Loose spokes after only a few rides

Huge performance difference of the command find with and without using %M option to show permissions

Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing

One-dimensional Japanese puzzle

My body leaves; my core can stay

How do you keep chess fun when your opponent constantly beats you?



Using Laplace Transforms to solve the PDE $fracpartialthetapartial t=kfracpartial^2thetapartial x^2$



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Inverse Laplace of an exponential function $exp-xsqrt(s+h)/k$Inverse Laplace transform of a given functionHeaviside function in the function whose Laplace transformation is $e^-(gamma+s)/[(s+gamma)^2+b^2]$Solving forced undamped vibration using Laplace transformsSolve non-linear pdeUsing Laplace Transforms to solve a PDEHeat equation - solving with Laplace transformShow that the following is a solution to the pdeHelp Solving Textbook Heat Conduction Laplace Transforms PDE ProblemHelp Solving Textbook Heat Conduction Laplace Transforms PDE Problem 2Solving the canonical form of an elliptic PDE [HEAT EQUATION]










4












$begingroup$



I am trying to solve the conduction problem for the temperatures $theta(x,t)$.
beginalign
fracpartialthetapartial t&=kfracpartial^2thetapartial x^2 \
theta(0,t)&=T_0e^-bt, t>0, b>0 tag1\
theta(x,0)&=0, x>0.
endalign




My attempt:



I took the Laplace transform with respect to t of the PDE.
beginalign
mathcalL_t(theta_t(x,t))&=kmathcalL_t(theta_xx(x,t)) \
smathcalL_t(theta(x,t))&=kfracd^2dx^2mathcalL_t(theta(x,t)) \
sbartheta&=kfracd^2dx^2bartheta.
endalign



Solving this ODE, I get
$$bartheta(x,t)=Ae^xsqrtfracsk+Be^-xsqrtfracsk, A,BinmathbbR.$$
To ensure $bartheta$ is finite, take $A=0$ as $|bartheta|rightarrowinfty$ as $|s|rightarrowinfty.$ Taking the Laplace transform of $(1)$ and imposing this boundary condition, I get $$bartheta(x,t)=fracT_0s+be^-xsqrtfracsk.$$ Assuming this is correct, how can I invert? A hint would be appreciated in (I have tried convolution theorem). I expect the result to be in terms of error functions.



Update:



$$mathcalL^-1left(frac1s+btimes e^-xsqrtfracskright)=e^-btastfrackxe^fracx^24tk2sqrtpi (kt)^3.$$ I have used the property $$mathcalL(f(ct))=frac1cFleft(fracscright).$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    You might find this helpful: math.stackexchange.com/questions/1779581/…
    $endgroup$
    – Paul
    Apr 7 at 3:04










  • $begingroup$
    @Paul Thanks, I was on the right track. I have updated my attempt
    $endgroup$
    – Bell
    Apr 7 at 3:12
















4












$begingroup$



I am trying to solve the conduction problem for the temperatures $theta(x,t)$.
beginalign
fracpartialthetapartial t&=kfracpartial^2thetapartial x^2 \
theta(0,t)&=T_0e^-bt, t>0, b>0 tag1\
theta(x,0)&=0, x>0.
endalign




My attempt:



I took the Laplace transform with respect to t of the PDE.
beginalign
mathcalL_t(theta_t(x,t))&=kmathcalL_t(theta_xx(x,t)) \
smathcalL_t(theta(x,t))&=kfracd^2dx^2mathcalL_t(theta(x,t)) \
sbartheta&=kfracd^2dx^2bartheta.
endalign



Solving this ODE, I get
$$bartheta(x,t)=Ae^xsqrtfracsk+Be^-xsqrtfracsk, A,BinmathbbR.$$
To ensure $bartheta$ is finite, take $A=0$ as $|bartheta|rightarrowinfty$ as $|s|rightarrowinfty.$ Taking the Laplace transform of $(1)$ and imposing this boundary condition, I get $$bartheta(x,t)=fracT_0s+be^-xsqrtfracsk.$$ Assuming this is correct, how can I invert? A hint would be appreciated in (I have tried convolution theorem). I expect the result to be in terms of error functions.



Update:



$$mathcalL^-1left(frac1s+btimes e^-xsqrtfracskright)=e^-btastfrackxe^fracx^24tk2sqrtpi (kt)^3.$$ I have used the property $$mathcalL(f(ct))=frac1cFleft(fracscright).$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    You might find this helpful: math.stackexchange.com/questions/1779581/…
    $endgroup$
    – Paul
    Apr 7 at 3:04










  • $begingroup$
    @Paul Thanks, I was on the right track. I have updated my attempt
    $endgroup$
    – Bell
    Apr 7 at 3:12














4












4








4


1



$begingroup$



I am trying to solve the conduction problem for the temperatures $theta(x,t)$.
beginalign
fracpartialthetapartial t&=kfracpartial^2thetapartial x^2 \
theta(0,t)&=T_0e^-bt, t>0, b>0 tag1\
theta(x,0)&=0, x>0.
endalign




My attempt:



I took the Laplace transform with respect to t of the PDE.
beginalign
mathcalL_t(theta_t(x,t))&=kmathcalL_t(theta_xx(x,t)) \
smathcalL_t(theta(x,t))&=kfracd^2dx^2mathcalL_t(theta(x,t)) \
sbartheta&=kfracd^2dx^2bartheta.
endalign



Solving this ODE, I get
$$bartheta(x,t)=Ae^xsqrtfracsk+Be^-xsqrtfracsk, A,BinmathbbR.$$
To ensure $bartheta$ is finite, take $A=0$ as $|bartheta|rightarrowinfty$ as $|s|rightarrowinfty.$ Taking the Laplace transform of $(1)$ and imposing this boundary condition, I get $$bartheta(x,t)=fracT_0s+be^-xsqrtfracsk.$$ Assuming this is correct, how can I invert? A hint would be appreciated in (I have tried convolution theorem). I expect the result to be in terms of error functions.



Update:



$$mathcalL^-1left(frac1s+btimes e^-xsqrtfracskright)=e^-btastfrackxe^fracx^24tk2sqrtpi (kt)^3.$$ I have used the property $$mathcalL(f(ct))=frac1cFleft(fracscright).$$










share|cite|improve this question











$endgroup$





I am trying to solve the conduction problem for the temperatures $theta(x,t)$.
beginalign
fracpartialthetapartial t&=kfracpartial^2thetapartial x^2 \
theta(0,t)&=T_0e^-bt, t>0, b>0 tag1\
theta(x,0)&=0, x>0.
endalign




My attempt:



I took the Laplace transform with respect to t of the PDE.
beginalign
mathcalL_t(theta_t(x,t))&=kmathcalL_t(theta_xx(x,t)) \
smathcalL_t(theta(x,t))&=kfracd^2dx^2mathcalL_t(theta(x,t)) \
sbartheta&=kfracd^2dx^2bartheta.
endalign



Solving this ODE, I get
$$bartheta(x,t)=Ae^xsqrtfracsk+Be^-xsqrtfracsk, A,BinmathbbR.$$
To ensure $bartheta$ is finite, take $A=0$ as $|bartheta|rightarrowinfty$ as $|s|rightarrowinfty.$ Taking the Laplace transform of $(1)$ and imposing this boundary condition, I get $$bartheta(x,t)=fracT_0s+be^-xsqrtfracsk.$$ Assuming this is correct, how can I invert? A hint would be appreciated in (I have tried convolution theorem). I expect the result to be in terms of error functions.



Update:



$$mathcalL^-1left(frac1s+btimes e^-xsqrtfracskright)=e^-btastfrackxe^fracx^24tk2sqrtpi (kt)^3.$$ I have used the property $$mathcalL(f(ct))=frac1cFleft(fracscright).$$







ordinary-differential-equations pde laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 7 at 3:11







Bell

















asked Apr 7 at 2:36









BellBell

221318




221318











  • $begingroup$
    You might find this helpful: math.stackexchange.com/questions/1779581/…
    $endgroup$
    – Paul
    Apr 7 at 3:04










  • $begingroup$
    @Paul Thanks, I was on the right track. I have updated my attempt
    $endgroup$
    – Bell
    Apr 7 at 3:12

















  • $begingroup$
    You might find this helpful: math.stackexchange.com/questions/1779581/…
    $endgroup$
    – Paul
    Apr 7 at 3:04










  • $begingroup$
    @Paul Thanks, I was on the right track. I have updated my attempt
    $endgroup$
    – Bell
    Apr 7 at 3:12
















$begingroup$
You might find this helpful: math.stackexchange.com/questions/1779581/…
$endgroup$
– Paul
Apr 7 at 3:04




$begingroup$
You might find this helpful: math.stackexchange.com/questions/1779581/…
$endgroup$
– Paul
Apr 7 at 3:04












$begingroup$
@Paul Thanks, I was on the right track. I have updated my attempt
$endgroup$
– Bell
Apr 7 at 3:12





$begingroup$
@Paul Thanks, I was on the right track. I have updated my attempt
$endgroup$
– Bell
Apr 7 at 3:12











1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $theta(x,t)=X(x)T(t)$ ,



Then $X(x)T'(t)=kX''(x)T(t)$



$dfracT'(t)kT(t)=dfracX''(x)X(x)=-s^2$



$begincasesdfracT'(t)kT(t)=-s^2\X''(x)+s^2X(x)=0endcases$



$begincasesT(t)=c_3(s)e^-kts^2\X(x)=begincasesc_1(s)sin xs+c_2(s)cos xs&textwhen~sneq0\c_1x+c_2&textwhen~s=0endcasesendcases$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty C_2(s)e^-kts^2cos xs~ds$



$theta(0,t)=T_0e^-bt$ :



$int_0^infty C_2(s)e^-kts^2~ds=T_0e^-bt$



$C_2(s)=T_0deltaleft(s-sqrtdfracbkright)$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty T_0deltaleft(s-sqrtdfracbkright)e^-kts^2cos xs~ds$



$theta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+T_0e^-btcossqrtdfracbkx$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
    $endgroup$
    – Bell
    Apr 7 at 11:01











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177673%2fusing-laplace-transforms-to-solve-the-pde-frac-partial-theta-partial-t-k-f%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let $theta(x,t)=X(x)T(t)$ ,



Then $X(x)T'(t)=kX''(x)T(t)$



$dfracT'(t)kT(t)=dfracX''(x)X(x)=-s^2$



$begincasesdfracT'(t)kT(t)=-s^2\X''(x)+s^2X(x)=0endcases$



$begincasesT(t)=c_3(s)e^-kts^2\X(x)=begincasesc_1(s)sin xs+c_2(s)cos xs&textwhen~sneq0\c_1x+c_2&textwhen~s=0endcasesendcases$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty C_2(s)e^-kts^2cos xs~ds$



$theta(0,t)=T_0e^-bt$ :



$int_0^infty C_2(s)e^-kts^2~ds=T_0e^-bt$



$C_2(s)=T_0deltaleft(s-sqrtdfracbkright)$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty T_0deltaleft(s-sqrtdfracbkright)e^-kts^2cos xs~ds$



$theta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+T_0e^-btcossqrtdfracbkx$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
    $endgroup$
    – Bell
    Apr 7 at 11:01















0












$begingroup$

Let $theta(x,t)=X(x)T(t)$ ,



Then $X(x)T'(t)=kX''(x)T(t)$



$dfracT'(t)kT(t)=dfracX''(x)X(x)=-s^2$



$begincasesdfracT'(t)kT(t)=-s^2\X''(x)+s^2X(x)=0endcases$



$begincasesT(t)=c_3(s)e^-kts^2\X(x)=begincasesc_1(s)sin xs+c_2(s)cos xs&textwhen~sneq0\c_1x+c_2&textwhen~s=0endcasesendcases$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty C_2(s)e^-kts^2cos xs~ds$



$theta(0,t)=T_0e^-bt$ :



$int_0^infty C_2(s)e^-kts^2~ds=T_0e^-bt$



$C_2(s)=T_0deltaleft(s-sqrtdfracbkright)$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty T_0deltaleft(s-sqrtdfracbkright)e^-kts^2cos xs~ds$



$theta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+T_0e^-btcossqrtdfracbkx$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
    $endgroup$
    – Bell
    Apr 7 at 11:01













0












0








0





$begingroup$

Let $theta(x,t)=X(x)T(t)$ ,



Then $X(x)T'(t)=kX''(x)T(t)$



$dfracT'(t)kT(t)=dfracX''(x)X(x)=-s^2$



$begincasesdfracT'(t)kT(t)=-s^2\X''(x)+s^2X(x)=0endcases$



$begincasesT(t)=c_3(s)e^-kts^2\X(x)=begincasesc_1(s)sin xs+c_2(s)cos xs&textwhen~sneq0\c_1x+c_2&textwhen~s=0endcasesendcases$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty C_2(s)e^-kts^2cos xs~ds$



$theta(0,t)=T_0e^-bt$ :



$int_0^infty C_2(s)e^-kts^2~ds=T_0e^-bt$



$C_2(s)=T_0deltaleft(s-sqrtdfracbkright)$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty T_0deltaleft(s-sqrtdfracbkright)e^-kts^2cos xs~ds$



$theta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+T_0e^-btcossqrtdfracbkx$






share|cite|improve this answer











$endgroup$



Let $theta(x,t)=X(x)T(t)$ ,



Then $X(x)T'(t)=kX''(x)T(t)$



$dfracT'(t)kT(t)=dfracX''(x)X(x)=-s^2$



$begincasesdfracT'(t)kT(t)=-s^2\X''(x)+s^2X(x)=0endcases$



$begincasesT(t)=c_3(s)e^-kts^2\X(x)=begincasesc_1(s)sin xs+c_2(s)cos xs&textwhen~sneq0\c_1x+c_2&textwhen~s=0endcasesendcases$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty C_2(s)e^-kts^2cos xs~ds$



$theta(0,t)=T_0e^-bt$ :



$int_0^infty C_2(s)e^-kts^2~ds=T_0e^-bt$



$C_2(s)=T_0deltaleft(s-sqrtdfracbkright)$



$thereforetheta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+int_0^infty T_0deltaleft(s-sqrtdfracbkright)e^-kts^2cos xs~ds$



$theta(x,t)=int_0^infty C_1(s)e^-kts^2sin xs~ds+T_0e^-btcossqrtdfracbkx$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 8 at 7:21

























answered Apr 7 at 7:17









doraemonpauldoraemonpaul

12.9k31761




12.9k31761











  • $begingroup$
    The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
    $endgroup$
    – Bell
    Apr 7 at 11:01
















  • $begingroup$
    The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
    $endgroup$
    – Bell
    Apr 7 at 11:01















$begingroup$
The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
$endgroup$
– Bell
Apr 7 at 11:01




$begingroup$
The answer given in my textbook is $$theta(x,t)=fracT_0e^-bt2left(e^xsqrt-b/ktexterfcleft(fracx+2sqrt-b/kkt2sqrtktright)+e^-xsqrt-b/ktexterfcleft(fracx-2sqrt-b/kkt2sqrtktright)right).$$ Here, erfc is the complementary Error function. Is this equivalent to your result?
$endgroup$
– Bell
Apr 7 at 11:01

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177673%2fusing-laplace-transforms-to-solve-the-pde-frac-partial-theta-partial-t-k-f%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

WordPress Information needed

Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj