Skip to main content

Rak (zviježđe) Vanjske poveznice | Navigacijski izbornikZajedničkom poslužiteljuRak (zviježđe)The Deep Photographic Guide to the Constellations: CancerDopunite gau

U izradi, ZviježđaZviježđa


latzviježđazodijakaLavaBlizanacaRisaMalog psaVodene zmijeVeliki medvjed imena 7 zvijezda 1.gifAndromedaBerenikina kosaBikBlizanciCefejCentaurDjevicaDlijetoDupinEridanFeniksGavranGolubGuštericaHerkulIndijanacJaracJednorogJedroJužna krunaJužna ribaJužni križJužni trokutKameleonKasiopejaKemijska pećKiparKitKobilicaKočijašKompasKrmaLabudLavLeteća ribaLiraLisicaLovački psiMala vodena zmijaMali lavMali medvjedMali pasMikroskopMrežaMušicaOktantOltarOraoOrionOvanPaunPegazPeharPerzejRajska pticaRakRavnaloRibeRisSatSekstantSjeverna krunaSlikarski stalakStolStrijelacStrjelicaŠestarŠkorpionŠtitTeleskopTrokutTukanVagaVeliki medvjedVeliki pasVodena zmijaVodenjakVolarVukZecZlatna ribaZmajZmijaZmijonosacZračna pumpaŽdralŽdrijebeŽirafa












Rak (zviježđe)




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje






















Rak (lat.: Cancer)

Cancer
Kratica
Cnc

Genitiv
Cancri
Simbolizira:

rak

Rektascenzija
9 h

Deklinacija
+20°
Površina
506 sq. deg. (rang: 31.)
Broj zvijezda
sjajnijih od m = 3
0
Najsjajnija zvijezda

β Cnc (Altarf)
(Priv. mag. 3.5)

Meteorski pljuskovi

  • Delta Cancridi
Susjedna
zviježđa

  • Ris

  • Blizanci

  • Mali pas

  • Vodena zmija

  • Lav


  • Mali lav (kut)

Vidljivo u rasponu zemljopisnih širina: +90° i −60°
U najboljem položaju za promatranje u 21h je u mjesecu ožujku. 
vidi i Kategorija:Rak (zviježđe)

Rak (lat. Cancer) jedno je od zviježđa zodijaka, pozicionirano između Lava na istoku, Blizanaca na zapadu, Risa na sjeveru i Malog psa te Vodene zmije na jugu.



Vanjske poveznice |





Logotip Zajedničkog poslužitelja


Na Zajedničkom poslužitelju postoje datoteke na temu: Rak (zviježđe).
  • The Deep Photographic Guide to the Constellations: Cancer


Veliki medvjed imena 7 zvijezda 1.gifNedovršeni članak Rak (zviježđe) koji govori o zviježđu treba dopuniti. Dopunite ga prema pravilima Wikipedije.





Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Rak_(zviježđe)&oldid=4037291"










Navigacijski izbornik


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.076","walltime":"0.107","ppvisitednodes":"value":516,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":21371,"limit":2097152,"templateargumentsize":"value":8097,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":1,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 58.677 1 -total"," 72.90% 42.774 1 Predložak:Zviježđa"," 59.89% 35.143 1 Predložak:Navigacija"," 15.55% 9.124 1 Predložak:Tnavbar"," 12.78% 7.501 1 Predložak:Mrva-zviježđe"," 9.77% 5.732 1 Predložak:Infobox_zviježđe"," 7.46% 4.380 88 Predložak:Lat_const"," 7.36% 4.318 1 Predložak:Mrva-"," 4.92% 2.889 2 Predložak:·w"," 4.08% 2.395 1 Predložak:Commons"],"cachereport":"origin":"mw1274","timestamp":"20190411052524","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":248,"wgHostname":"mw1274"););

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...