Skip to main content

369 KK Matukio | Waliozaliwa | Waliofariki | Urambazaji

Miaka ya karne ya 4 KK369 KKKarne ya 4 KK


Lango la HistoriaLango la BiografiaKaribuniOrodha ya Miaka◄Karne ya 5 KKKarne ya 3 KK►◄Miaka ya 380 KKMiaka ya 370 KKMiaka ya 350 KKMiaka ya 340 KK►◄◄◄372 KK371 KK370 KK368 KK367 KK366 KK►►►mwakakabla ya Kristo












369 KK




Kutoka Wikipedia, kamusi elezo huru






Jump to navigation
Jump to search



Lango la Historia | Lango la Biografia | Karibuni | Orodha ya Miaka


◄ |
Karne ya 5 KK |
Karne ya 4 KK |
Karne ya 3 KK |

◄ | Miaka ya 380 KK | Miaka ya 370 KK | Miaka ya 360 KK | Miaka ya 350 KK |
Miaka ya 340 KK |

◄◄ | ◄ | 372 KK | 371 KK | 370 KK | 369 KK |
368 KK |
367 KK |
366 KK |
► |
►►



Makala hii inahusu mwaka 369 KK (kabla ya Kristo).



Matukio |



Waliozaliwa |



Waliofariki |









Rudishwa kutoka "https://sw.wikipedia.org/w/index.php?title=369_KK&oldid=897356"










Urambazaji


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.020","walltime":"0.021","ppvisitednodes":"value":174,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1661,"limit":2097152,"templateargumentsize":"value":219,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 11.514 1 Kigezo:MwakaKK","100.00% 11.514 1 -total"," 38.88% 4.477 1 Kigezo:MwakaHeadMakala"," 16.69% 1.922 1 Kigezo:Kalenderstil"],"cachereport":"origin":"mw1321","timestamp":"20190412185749","ttl":86400,"transientcontent":true););"@context":"https://schema.org","@type":"Article","name":"369 KK","url":"https://sw.wikipedia.org/wiki/369_KK","sameAs":"http://www.wikidata.org/entity/Q227518","mainEntity":"http://www.wikidata.org/entity/Q227518","author":"@type":"Organization","name":"Uchangiaji katika miradi ya Wikimedia","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2010-08-14T21:31:32Z","dateModified":"2013-03-11T15:16:57Z"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":110,"wgHostname":"mw1253"););

Popular posts from this blog

What does it mean to find percent difference when two values are equivalent? The 2019 Stack Overflow Developer Survey Results Are InWhat does “percent of change” mean?Find what percent X is between two numbers?Unable to determine 'original amount' in simple percentage problemsWhat is the correct percent difference formula?How does proportionality hold when quantities are high? And the percentage increase formulaprofit and loss GRE questionProfitability calculationWhat is the difference between $xtimes 0.8$ and $x div 1.2 ? $Finding the percent probability of completing BUDs trainingCalculating Percent Difference with zero and near zero values

Why did some early computer designers eschew integers?What register size did early computers use?What other computers used this floating-point format?Why did so many early microcomputers use the MOS 6502 and variants?Why were early computers named “Mark”?Why did expert systems fall?Why were early personal computer monitors not green?When did “Zen” in computer programming become a thing?History of advanced hardwareWere there any working computers using residue number systems?Why did some CPUs use two Read/Write lines, and others just one?

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective