Evaluate: $sum_j=0^ksum_i=0^jk choose j^2k choose i$Evaluate $sum_k=1^n (2k-1)n choose k$ using calculusShow that $sum_k=0^n(-1)^n+knchoose k(ak+b)_n=n!a^n$Show that $int_0^1ln(-lnx)cdotmathrm dxover 1+x^2=-sumlimits_n=0^infty1over 2n+1cdot2piover e^pi(2n+1)+1$ and evaluate itShowing that $sum_k=0^n(-1)^knchoose k1over k+1sum_j=0^kH_j+1over j+1=1over (n+1)^3$Is this sum $sum_k=0^nnchoose ksum_i=0^k(-1)^ikchoose iH_n+k-i=H_2n$ correct?Looking for the closed form of $sum_n=1^inftyzeta(2n+1)over (2n+1)2^4n$Evaluate $sumlimits_n=0^infty(-1)^nsumlimits_j=0^kk choose jfrac(-1)^j2n+2j+1$Concerning this sum $sum_n=0^inftyfrac14n+1left[frac14^n2n choose nright]^2=fracGamma^4left(frac14right)16pi^2$Looking at this sum $sum_n=0^inftyfrac(2n)!!(2n+1)!!frac2n choose n4^ng(n)$About this sum $sum_n=0^inftyfrac2n choose n^364^nf(n)$

The magic money tree problem

Can town administrative "code" overule state laws like those forbidding trespassing?

What would happen to a modern skyscraper if it rains micro blackholes?

Why is this code 6.5x slower with optimizations enabled?

Is it possible to do 50 km distance without any previous training?

Is there really no realistic way for a skeleton monster to move around without magic?

What is the offset in a seaplane's hull?

Can a German sentence have two subjects?

Is there a familial term for apples and pears?

If Manufacturer spice model and Datasheet give different values which should I use?

Why is "Reports" in sentence down without "The"

Why is the design of haulage companies so “special”?

How to type dʒ symbol (IPA) on Mac?

How to make payment on the internet without leaving a money trail?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

The use of multiple foreign keys on same column in SQL Server

Is it possible to make sharp wind that can cut stuff from afar?

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

I see my dog run

How do I create uniquely male characters?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

How can bays and straits be determined in a procedurally generated map?

Example of a relative pronoun

Email Account under attack (really) - anything I can do?



Evaluate: $sum_j=0^ksum_i=0^jk choose j^2k choose i$


Evaluate $sum_k=1^n (2k-1)n choose k$ using calculusShow that $sum_k=0^n(-1)^n+knchoose k(ak+b)_n=n!a^n$Show that $int_0^1ln(-lnx)cdotmathrm dxover 1+x^2=-sumlimits_n=0^infty1over 2n+1cdot2piover e^pi(2n+1)+1$ and evaluate itShowing that $sum_k=0^n(-1)^knchoose k1over k+1sum_j=0^kH_j+1over j+1=1over (n+1)^3$Is this sum $sum_k=0^nnchoose ksum_i=0^k(-1)^ikchoose iH_n+k-i=H_2n$ correct?Looking for the closed form of $sum_n=1^inftyzeta(2n+1)over (2n+1)2^4n$Evaluate $sumlimits_n=0^infty(-1)^nsumlimits_j=0^kk choose jfrac(-1)^j2n+2j+1$Concerning this sum $sum_n=0^inftyfrac14n+1left[frac14^n2n choose nright]^2=fracGamma^4left(frac14right)16pi^2$Looking at this sum $sum_n=0^inftyfrac(2n)!!(2n+1)!!frac2n choose n4^ng(n)$About this sum $sum_n=0^inftyfrac2n choose n^364^nf(n)$













5












$begingroup$


Can anybody help me to evaluate this sum $(1)$?



$$sum_j=0^ksum_i=0^jk choose j^2k choose itag1$$



I have manage to figure out:



$$sum_j=0^ksum_i=0^jk choose jk choose i=frac4^k+2k choose k2tag2$$
and



$$sum_j=0^ksum_i=0^jk+1 choose j+1^2k choose i=2^k2k choose kfrac2k+1k+1tag3$$










share|cite|improve this question









$endgroup$
















    5












    $begingroup$


    Can anybody help me to evaluate this sum $(1)$?



    $$sum_j=0^ksum_i=0^jk choose j^2k choose itag1$$



    I have manage to figure out:



    $$sum_j=0^ksum_i=0^jk choose jk choose i=frac4^k+2k choose k2tag2$$
    and



    $$sum_j=0^ksum_i=0^jk+1 choose j+1^2k choose i=2^k2k choose kfrac2k+1k+1tag3$$










    share|cite|improve this question









    $endgroup$














      5












      5








      5


      0



      $begingroup$


      Can anybody help me to evaluate this sum $(1)$?



      $$sum_j=0^ksum_i=0^jk choose j^2k choose itag1$$



      I have manage to figure out:



      $$sum_j=0^ksum_i=0^jk choose jk choose i=frac4^k+2k choose k2tag2$$
      and



      $$sum_j=0^ksum_i=0^jk+1 choose j+1^2k choose i=2^k2k choose kfrac2k+1k+1tag3$$










      share|cite|improve this question









      $endgroup$




      Can anybody help me to evaluate this sum $(1)$?



      $$sum_j=0^ksum_i=0^jk choose j^2k choose itag1$$



      I have manage to figure out:



      $$sum_j=0^ksum_i=0^jk choose jk choose i=frac4^k+2k choose k2tag2$$
      and



      $$sum_j=0^ksum_i=0^jk+1 choose j+1^2k choose i=2^k2k choose kfrac2k+1k+1tag3$$







      sequences-and-series binomial-theorem






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 1 at 15:50









      coffeeecoffeee

      18919




      18919




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$


          We start with
          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=0^kbinomkj^2binomki\
          &=2^ksum_j=0^kbinomkjbinomkk-j\
          &=2^ksum_j=0^kbinomkj[z^k-j](1+z)^ktag1\
          &=2^k[z^k](1+z)^ksum_j=0^kbinomkjz^jtag2\
          &=2^k[z^k](1+z)^2k\
          &,,colorblue=2^kbinom2kktag3
          endalign*




          Comment:



          • In (1) we use the coefficient of operator $[z^p]$ to denote the coefficient of $z^p$.


          • In (2) we apply the rule $[z^p-q]A(z)=[z^p]z^qA(z)$.


          • In (3) we select the coefficient of $z^k$.



          We obtain from (3)



          beginalign*
          sum_j=0^k&sum_i=0^jbinomkj^2binomki=2^kbinom2kk-sum_j=0^ksum_i=j+1^kbinomkj^2binomkitag4
          endalign*



          The right-hand sum of (4) gives



          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=j+1^kbinomkj^2binomki\
          &=sum_j=0^ksum_i=k-j+1^kbinomkj^2binomkitag5\
          &=sum_j=0^ksum_i=-j+1^0binomkj+k^2binomkitag6\
          &=sum_j=0^ksum_i=0^j-1binomkk-j^2binomkitag7\
          &=sum_j=0^ksum_i=0^j-1binomkj^2binomki\
          &,,colorblue=sum_j=0^ksum_i=0^jbinomkj^2binomki-sum_j=0^kbinomkj^3tag8
          endalign*




          Comment:



          • In (5) we change the order of the outer sum $jto k-j$.


          • In (6) we shift the index $i$ by $k$.


          • In (7) we replace $i$ with $-i$.



          We conclude from (4) and (8)



          beginalign*
          colorbluesum_j=0^ksum_i=0^jbinomkj^2binomki=2^k-1binom2kk+frac12sum_j=0^kbinomkj^3
          endalign*



          with $sum_j=0^kbinomkj^3$ the Franel numbers stored as A000172 in OEIS.







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Interesting work. Verified. (+1).
            $endgroup$
            – Marko Riedel
            Apr 1 at 20:43










          • $begingroup$
            @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
            $endgroup$
            – Markus Scheuer
            Apr 1 at 20:45






          • 1




            $begingroup$
            An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
            $endgroup$
            – DragunityMAX
            Apr 1 at 22:06











          • $begingroup$
            Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
            $endgroup$
            – coffeee
            Apr 2 at 5:26






          • 1




            $begingroup$
            I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
            $endgroup$
            – coffeee
            Apr 2 at 5:31











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170774%2fevaluate-sum-j-0k-sum-i-0jk-choose-j2k-choose-i%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$


          We start with
          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=0^kbinomkj^2binomki\
          &=2^ksum_j=0^kbinomkjbinomkk-j\
          &=2^ksum_j=0^kbinomkj[z^k-j](1+z)^ktag1\
          &=2^k[z^k](1+z)^ksum_j=0^kbinomkjz^jtag2\
          &=2^k[z^k](1+z)^2k\
          &,,colorblue=2^kbinom2kktag3
          endalign*




          Comment:



          • In (1) we use the coefficient of operator $[z^p]$ to denote the coefficient of $z^p$.


          • In (2) we apply the rule $[z^p-q]A(z)=[z^p]z^qA(z)$.


          • In (3) we select the coefficient of $z^k$.



          We obtain from (3)



          beginalign*
          sum_j=0^k&sum_i=0^jbinomkj^2binomki=2^kbinom2kk-sum_j=0^ksum_i=j+1^kbinomkj^2binomkitag4
          endalign*



          The right-hand sum of (4) gives



          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=j+1^kbinomkj^2binomki\
          &=sum_j=0^ksum_i=k-j+1^kbinomkj^2binomkitag5\
          &=sum_j=0^ksum_i=-j+1^0binomkj+k^2binomkitag6\
          &=sum_j=0^ksum_i=0^j-1binomkk-j^2binomkitag7\
          &=sum_j=0^ksum_i=0^j-1binomkj^2binomki\
          &,,colorblue=sum_j=0^ksum_i=0^jbinomkj^2binomki-sum_j=0^kbinomkj^3tag8
          endalign*




          Comment:



          • In (5) we change the order of the outer sum $jto k-j$.


          • In (6) we shift the index $i$ by $k$.


          • In (7) we replace $i$ with $-i$.



          We conclude from (4) and (8)



          beginalign*
          colorbluesum_j=0^ksum_i=0^jbinomkj^2binomki=2^k-1binom2kk+frac12sum_j=0^kbinomkj^3
          endalign*



          with $sum_j=0^kbinomkj^3$ the Franel numbers stored as A000172 in OEIS.







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Interesting work. Verified. (+1).
            $endgroup$
            – Marko Riedel
            Apr 1 at 20:43










          • $begingroup$
            @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
            $endgroup$
            – Markus Scheuer
            Apr 1 at 20:45






          • 1




            $begingroup$
            An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
            $endgroup$
            – DragunityMAX
            Apr 1 at 22:06











          • $begingroup$
            Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
            $endgroup$
            – coffeee
            Apr 2 at 5:26






          • 1




            $begingroup$
            I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
            $endgroup$
            – coffeee
            Apr 2 at 5:31















          3












          $begingroup$


          We start with
          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=0^kbinomkj^2binomki\
          &=2^ksum_j=0^kbinomkjbinomkk-j\
          &=2^ksum_j=0^kbinomkj[z^k-j](1+z)^ktag1\
          &=2^k[z^k](1+z)^ksum_j=0^kbinomkjz^jtag2\
          &=2^k[z^k](1+z)^2k\
          &,,colorblue=2^kbinom2kktag3
          endalign*




          Comment:



          • In (1) we use the coefficient of operator $[z^p]$ to denote the coefficient of $z^p$.


          • In (2) we apply the rule $[z^p-q]A(z)=[z^p]z^qA(z)$.


          • In (3) we select the coefficient of $z^k$.



          We obtain from (3)



          beginalign*
          sum_j=0^k&sum_i=0^jbinomkj^2binomki=2^kbinom2kk-sum_j=0^ksum_i=j+1^kbinomkj^2binomkitag4
          endalign*



          The right-hand sum of (4) gives



          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=j+1^kbinomkj^2binomki\
          &=sum_j=0^ksum_i=k-j+1^kbinomkj^2binomkitag5\
          &=sum_j=0^ksum_i=-j+1^0binomkj+k^2binomkitag6\
          &=sum_j=0^ksum_i=0^j-1binomkk-j^2binomkitag7\
          &=sum_j=0^ksum_i=0^j-1binomkj^2binomki\
          &,,colorblue=sum_j=0^ksum_i=0^jbinomkj^2binomki-sum_j=0^kbinomkj^3tag8
          endalign*




          Comment:



          • In (5) we change the order of the outer sum $jto k-j$.


          • In (6) we shift the index $i$ by $k$.


          • In (7) we replace $i$ with $-i$.



          We conclude from (4) and (8)



          beginalign*
          colorbluesum_j=0^ksum_i=0^jbinomkj^2binomki=2^k-1binom2kk+frac12sum_j=0^kbinomkj^3
          endalign*



          with $sum_j=0^kbinomkj^3$ the Franel numbers stored as A000172 in OEIS.







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Interesting work. Verified. (+1).
            $endgroup$
            – Marko Riedel
            Apr 1 at 20:43










          • $begingroup$
            @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
            $endgroup$
            – Markus Scheuer
            Apr 1 at 20:45






          • 1




            $begingroup$
            An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
            $endgroup$
            – DragunityMAX
            Apr 1 at 22:06











          • $begingroup$
            Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
            $endgroup$
            – coffeee
            Apr 2 at 5:26






          • 1




            $begingroup$
            I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
            $endgroup$
            – coffeee
            Apr 2 at 5:31













          3












          3








          3





          $begingroup$


          We start with
          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=0^kbinomkj^2binomki\
          &=2^ksum_j=0^kbinomkjbinomkk-j\
          &=2^ksum_j=0^kbinomkj[z^k-j](1+z)^ktag1\
          &=2^k[z^k](1+z)^ksum_j=0^kbinomkjz^jtag2\
          &=2^k[z^k](1+z)^2k\
          &,,colorblue=2^kbinom2kktag3
          endalign*




          Comment:



          • In (1) we use the coefficient of operator $[z^p]$ to denote the coefficient of $z^p$.


          • In (2) we apply the rule $[z^p-q]A(z)=[z^p]z^qA(z)$.


          • In (3) we select the coefficient of $z^k$.



          We obtain from (3)



          beginalign*
          sum_j=0^k&sum_i=0^jbinomkj^2binomki=2^kbinom2kk-sum_j=0^ksum_i=j+1^kbinomkj^2binomkitag4
          endalign*



          The right-hand sum of (4) gives



          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=j+1^kbinomkj^2binomki\
          &=sum_j=0^ksum_i=k-j+1^kbinomkj^2binomkitag5\
          &=sum_j=0^ksum_i=-j+1^0binomkj+k^2binomkitag6\
          &=sum_j=0^ksum_i=0^j-1binomkk-j^2binomkitag7\
          &=sum_j=0^ksum_i=0^j-1binomkj^2binomki\
          &,,colorblue=sum_j=0^ksum_i=0^jbinomkj^2binomki-sum_j=0^kbinomkj^3tag8
          endalign*




          Comment:



          • In (5) we change the order of the outer sum $jto k-j$.


          • In (6) we shift the index $i$ by $k$.


          • In (7) we replace $i$ with $-i$.



          We conclude from (4) and (8)



          beginalign*
          colorbluesum_j=0^ksum_i=0^jbinomkj^2binomki=2^k-1binom2kk+frac12sum_j=0^kbinomkj^3
          endalign*



          with $sum_j=0^kbinomkj^3$ the Franel numbers stored as A000172 in OEIS.







          share|cite|improve this answer











          $endgroup$




          We start with
          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=0^kbinomkj^2binomki\
          &=2^ksum_j=0^kbinomkjbinomkk-j\
          &=2^ksum_j=0^kbinomkj[z^k-j](1+z)^ktag1\
          &=2^k[z^k](1+z)^ksum_j=0^kbinomkjz^jtag2\
          &=2^k[z^k](1+z)^2k\
          &,,colorblue=2^kbinom2kktag3
          endalign*




          Comment:



          • In (1) we use the coefficient of operator $[z^p]$ to denote the coefficient of $z^p$.


          • In (2) we apply the rule $[z^p-q]A(z)=[z^p]z^qA(z)$.


          • In (3) we select the coefficient of $z^k$.



          We obtain from (3)



          beginalign*
          sum_j=0^k&sum_i=0^jbinomkj^2binomki=2^kbinom2kk-sum_j=0^ksum_i=j+1^kbinomkj^2binomkitag4
          endalign*



          The right-hand sum of (4) gives



          beginalign*
          colorbluesum_j=0^k&colorbluesum_i=j+1^kbinomkj^2binomki\
          &=sum_j=0^ksum_i=k-j+1^kbinomkj^2binomkitag5\
          &=sum_j=0^ksum_i=-j+1^0binomkj+k^2binomkitag6\
          &=sum_j=0^ksum_i=0^j-1binomkk-j^2binomkitag7\
          &=sum_j=0^ksum_i=0^j-1binomkj^2binomki\
          &,,colorblue=sum_j=0^ksum_i=0^jbinomkj^2binomki-sum_j=0^kbinomkj^3tag8
          endalign*




          Comment:



          • In (5) we change the order of the outer sum $jto k-j$.


          • In (6) we shift the index $i$ by $k$.


          • In (7) we replace $i$ with $-i$.



          We conclude from (4) and (8)



          beginalign*
          colorbluesum_j=0^ksum_i=0^jbinomkj^2binomki=2^k-1binom2kk+frac12sum_j=0^kbinomkj^3
          endalign*



          with $sum_j=0^kbinomkj^3$ the Franel numbers stored as A000172 in OEIS.








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 1 at 20:47

























          answered Apr 1 at 20:21









          Markus ScheuerMarkus Scheuer

          64k460152




          64k460152











          • $begingroup$
            Interesting work. Verified. (+1).
            $endgroup$
            – Marko Riedel
            Apr 1 at 20:43










          • $begingroup$
            @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
            $endgroup$
            – Markus Scheuer
            Apr 1 at 20:45






          • 1




            $begingroup$
            An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
            $endgroup$
            – DragunityMAX
            Apr 1 at 22:06











          • $begingroup$
            Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
            $endgroup$
            – coffeee
            Apr 2 at 5:26






          • 1




            $begingroup$
            I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
            $endgroup$
            – coffeee
            Apr 2 at 5:31
















          • $begingroup$
            Interesting work. Verified. (+1).
            $endgroup$
            – Marko Riedel
            Apr 1 at 20:43










          • $begingroup$
            @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
            $endgroup$
            – Markus Scheuer
            Apr 1 at 20:45






          • 1




            $begingroup$
            An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
            $endgroup$
            – DragunityMAX
            Apr 1 at 22:06











          • $begingroup$
            Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
            $endgroup$
            – coffeee
            Apr 2 at 5:26






          • 1




            $begingroup$
            I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
            $endgroup$
            – coffeee
            Apr 2 at 5:31















          $begingroup$
          Interesting work. Verified. (+1).
          $endgroup$
          – Marko Riedel
          Apr 1 at 20:43




          $begingroup$
          Interesting work. Verified. (+1).
          $endgroup$
          – Marko Riedel
          Apr 1 at 20:43












          $begingroup$
          @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
          $endgroup$
          – Markus Scheuer
          Apr 1 at 20:45




          $begingroup$
          @MarkoRiedel: Many thanks for your friendly comment and the credit, Marko. :-)
          $endgroup$
          – Markus Scheuer
          Apr 1 at 20:45




          1




          1




          $begingroup$
          An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
          $endgroup$
          – DragunityMAX
          Apr 1 at 22:06





          $begingroup$
          An explanation to this answer is: let A be a matrix such that Aij = (kCi) * (kCj)^2, then the sum you want is the sum of lower triangular part of A = SL. Note that the sum of upper triangular part of A = SU is also equal to SL. Finally, we have SA=SU+SL-SD, where SA is the sum of all elements in A, and SD is the sum of Diagonal of A.
          $endgroup$
          – DragunityMAX
          Apr 1 at 22:06













          $begingroup$
          Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
          $endgroup$
          – coffeee
          Apr 2 at 5:26




          $begingroup$
          Thank you for your wonderful answer. I have check the link on Franel number, I am still curious, does this sum $sum_j=0^kk choose j^3$ have a closed form?
          $endgroup$
          – coffeee
          Apr 2 at 5:26




          1




          1




          $begingroup$
          I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
          $endgroup$
          – coffeee
          Apr 2 at 5:31




          $begingroup$
          I manage to find a closed form for this sum (similar to Franel) $$sum_j=0^kleft[2k choose 2j^3-2k choose 2j-1^3right]=(-1)^k2k choose k3k choose k$$
          $endgroup$
          – coffeee
          Apr 2 at 5:31

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170774%2fevaluate-sum-j-0k-sum-i-0jk-choose-j2k-choose-i%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

          WordPress Information needed

          Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj