Proving this complicated limit! The 2019 Stack Overflow Developer Survey Results Are InWhat is the correct radius of convergence for $ln(1+x)$?Help in proving $lim limits_n to infty (a_n pm b_n) = a pm b$limit of a function involving $arcsinx$ and $ln(1+x)$Help with a limit problemLimit of a sum versus individualIf $lim_limitsntoinfty(a_nsum_i=1^na_i^2)=1$, then $lim_limitsntoinftysqrt[3](3n)a_n=1$Limit of infinite summationProving the limitLimit of a complex sumSwapping limit operators in a specific probability exampleTrouble with L'Hôpital Justification for Complicated Limit of Integral
How to make payment on the internet without leaving a money trail?
Are there any other methods to apply to solving simultaneous equations?
What is the best strategy for white in this position?
Protecting Dualbooting Windows from dangerous code (like rm -rf)
Is this food a bread or a loaf?
Pristine Bit Checking
Inline version of a function returns different value than non-inline version
I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?
What is the meaning of Triage in Cybersec world?
Why is the maximum length of OpenWrt’s root password 8 characters?
Is flight data recorder erased after every flight?
Why can Shazam fly?
Should I use my personal or workplace e-mail when registering to external websites for work purpose?
How can I fix this gap between bookcases I made?
What tool would a Roman-age civilization have to grind silver and other metals into dust?
How to create dashed lines/arrows in Illustrator
Why is Grand Jury testimony secret?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Inversion Puzzle
Could JWST stay at L2 "forever"?
Idiomatic way to prevent slicing?
Why isn't airport relocation done gradually?
Can't find the latex code for the ⍎ (down tack jot) symbol
Return to UK after being refused
Proving this complicated limit!
The 2019 Stack Overflow Developer Survey Results Are InWhat is the correct radius of convergence for $ln(1+x)$?Help in proving $lim limits_n to infty (a_n pm b_n) = a pm b$limit of a function involving $arcsinx$ and $ln(1+x)$Help with a limit problemLimit of a sum versus individualIf $lim_limitsntoinfty(a_nsum_i=1^na_i^2)=1$, then $lim_limitsntoinftysqrt[3](3n)a_n=1$Limit of infinite summationProving the limitLimit of a complex sumSwapping limit operators in a specific probability exampleTrouble with L'Hôpital Justification for Complicated Limit of Integral
$begingroup$
I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.
The hints I have are:
$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$
$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $
I never calculated any limits with sum in the formula, nor I see how the tips are of any help.
Would appreciate a few hints and tips!
limits
$endgroup$
add a comment |
$begingroup$
I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.
The hints I have are:
$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$
$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $
I never calculated any limits with sum in the formula, nor I see how the tips are of any help.
Would appreciate a few hints and tips!
limits
$endgroup$
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47
add a comment |
$begingroup$
I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.
The hints I have are:
$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$
$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $
I never calculated any limits with sum in the formula, nor I see how the tips are of any help.
Would appreciate a few hints and tips!
limits
$endgroup$
I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.
The hints I have are:
$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$
$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $
I never calculated any limits with sum in the formula, nor I see how the tips are of any help.
Would appreciate a few hints and tips!
limits
limits
edited Apr 6 at 15:40
EnlightenedFunky
84211022
84211022
asked Apr 6 at 15:33
TegernakoTegernako
948
948
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47
add a comment |
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$
Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177120%2fproving-this-complicated-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$
Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$
$endgroup$
add a comment |
$begingroup$
Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$
Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$
$endgroup$
add a comment |
$begingroup$
Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$
Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$
$endgroup$
Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$
Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$
edited Apr 6 at 16:56
answered Apr 6 at 15:42
Robert ZRobert Z
101k1072145
101k1072145
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177120%2fproving-this-complicated-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37
$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47