Proving this complicated limit! The 2019 Stack Overflow Developer Survey Results Are InWhat is the correct radius of convergence for $ln(1+x)$?Help in proving $lim limits_n to infty (a_n pm b_n) = a pm b$limit of a function involving $arcsinx$ and $ln(1+x)$Help with a limit problemLimit of a sum versus individualIf $lim_limitsntoinfty(a_nsum_i=1^na_i^2)=1$, then $lim_limitsntoinftysqrt[3](3n)a_n=1$Limit of infinite summationProving the limitLimit of a complex sumSwapping limit operators in a specific probability exampleTrouble with L'Hôpital Justification for Complicated Limit of Integral

How to make payment on the internet without leaving a money trail?

Are there any other methods to apply to solving simultaneous equations?

What is the best strategy for white in this position?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

Is this food a bread or a loaf?

Pristine Bit Checking

Inline version of a function returns different value than non-inline version

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

What is the meaning of Triage in Cybersec world?

Why is the maximum length of OpenWrt’s root password 8 characters?

Is flight data recorder erased after every flight?

Why can Shazam fly?

Should I use my personal or workplace e-mail when registering to external websites for work purpose?

How can I fix this gap between bookcases I made?

What tool would a Roman-age civilization have to grind silver and other metals into dust?

How to create dashed lines/arrows in Illustrator

Why is Grand Jury testimony secret?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Inversion Puzzle

Could JWST stay at L2 "forever"?

Idiomatic way to prevent slicing?

Why isn't airport relocation done gradually?

Can't find the latex code for the ⍎ (down tack jot) symbol

Return to UK after being refused



Proving this complicated limit!



The 2019 Stack Overflow Developer Survey Results Are InWhat is the correct radius of convergence for $ln(1+x)$?Help in proving $lim limits_n to infty (a_n pm b_n) = a pm b$limit of a function involving $arcsinx$ and $ln(1+x)$Help with a limit problemLimit of a sum versus individualIf $lim_limitsntoinfty(a_nsum_i=1^na_i^2)=1$, then $lim_limitsntoinftysqrt[3](3n)a_n=1$Limit of infinite summationProving the limitLimit of a complex sumSwapping limit operators in a specific probability exampleTrouble with L'Hôpital Justification for Complicated Limit of Integral










0












$begingroup$


I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.



The hints I have are:



$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$



$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $



I never calculated any limits with sum in the formula, nor I see how the tips are of any help.



Would appreciate a few hints and tips!










share|cite|improve this question











$endgroup$











  • $begingroup$
    See math.stackexchange.com/questions/1356517/…
    $endgroup$
    – lab bhattacharjee
    Apr 6 at 15:37










  • $begingroup$
    The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
    $endgroup$
    – Robert Z
    Apr 6 at 15:47
















0












$begingroup$


I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.



The hints I have are:



$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$



$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $



I never calculated any limits with sum in the formula, nor I see how the tips are of any help.



Would appreciate a few hints and tips!










share|cite|improve this question











$endgroup$











  • $begingroup$
    See math.stackexchange.com/questions/1356517/…
    $endgroup$
    – lab bhattacharjee
    Apr 6 at 15:37










  • $begingroup$
    The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
    $endgroup$
    – Robert Z
    Apr 6 at 15:47














0












0








0


1



$begingroup$


I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.



The hints I have are:



$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$



$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $



I never calculated any limits with sum in the formula, nor I see how the tips are of any help.



Would appreciate a few hints and tips!










share|cite|improve this question











$endgroup$




I have to prove $limlimits_n to infty sum_limitsi=1^n frac(-1)^i+1i = ln2$.



The hints I have are:



$limlimits_n to infty sum_limitsi=1^n frac1i - ln(n) = c < infty$



$sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^2n frac12i $



I never calculated any limits with sum in the formula, nor I see how the tips are of any help.



Would appreciate a few hints and tips!







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 15:40









EnlightenedFunky

84211022




84211022










asked Apr 6 at 15:33









TegernakoTegernako

948




948











  • $begingroup$
    See math.stackexchange.com/questions/1356517/…
    $endgroup$
    – lab bhattacharjee
    Apr 6 at 15:37










  • $begingroup$
    The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
    $endgroup$
    – Robert Z
    Apr 6 at 15:47

















  • $begingroup$
    See math.stackexchange.com/questions/1356517/…
    $endgroup$
    – lab bhattacharjee
    Apr 6 at 15:37










  • $begingroup$
    The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
    $endgroup$
    – Robert Z
    Apr 6 at 15:47
















$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37




$begingroup$
See math.stackexchange.com/questions/1356517/…
$endgroup$
– lab bhattacharjee
Apr 6 at 15:37












$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47





$begingroup$
The second hint should be $sum_limitsi=1^2n frac(-1)^i+1i = sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i$.
$endgroup$
– Robert Z
Apr 6 at 15:47











1 Answer
1






active

oldest

votes


















3












$begingroup$

Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
$$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
and bounded above (show that part).
Then the sequence $(a_n)_n$ converges to a finite limit $c$.
Hence, by the second hint,
$$beginalign
sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
&=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
&to c-c+ln(2)=ln(2).
endalign$$

Finally note that
$$sum_limitsi=1^2n+1 frac(-1)^i+1i
=sum_limitsi=1^2n frac(-1)^i+1i+
frac12n+1to ln(2)+0=ln(2).$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177120%2fproving-this-complicated-limit%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
    $$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
    and bounded above (show that part).
    Then the sequence $(a_n)_n$ converges to a finite limit $c$.
    Hence, by the second hint,
    $$beginalign
    sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
    &=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
    &to c-c+ln(2)=ln(2).
    endalign$$

    Finally note that
    $$sum_limitsi=1^2n+1 frac(-1)^i+1i
    =sum_limitsi=1^2n frac(-1)^i+1i+
    frac12n+1to ln(2)+0=ln(2).$$






    share|cite|improve this answer











    $endgroup$

















      3












      $begingroup$

      Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
      $$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
      and bounded above (show that part).
      Then the sequence $(a_n)_n$ converges to a finite limit $c$.
      Hence, by the second hint,
      $$beginalign
      sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
      &=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
      &to c-c+ln(2)=ln(2).
      endalign$$

      Finally note that
      $$sum_limitsi=1^2n+1 frac(-1)^i+1i
      =sum_limitsi=1^2n frac(-1)^i+1i+
      frac12n+1to ln(2)+0=ln(2).$$






      share|cite|improve this answer











      $endgroup$















        3












        3








        3





        $begingroup$

        Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
        $$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
        and bounded above (show that part).
        Then the sequence $(a_n)_n$ converges to a finite limit $c$.
        Hence, by the second hint,
        $$beginalign
        sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
        &=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
        &to c-c+ln(2)=ln(2).
        endalign$$

        Finally note that
        $$sum_limitsi=1^2n+1 frac(-1)^i+1i
        =sum_limitsi=1^2n frac(-1)^i+1i+
        frac12n+1to ln(2)+0=ln(2).$$






        share|cite|improve this answer











        $endgroup$



        Let $a_n=sum_i=1^n frac1i - ln(n+1)$. Then the sequence $(a_n)_ngeq 1$ is increasing:
        $$a_n+1-a_n=frac1n+1-lnleft(1+frac1n+1right)geq 0$$
        and bounded above (show that part).
        Then the sequence $(a_n)_n$ converges to a finite limit $c$.
        Hence, by the second hint,
        $$beginalign
        sum_limitsi=1^2n frac(-1)^i+1i &= sum_limitsi=1^2n frac 1i - 2sum_limitsi=1^n frac12i\
        &=left(sum_limitsi=1^2n frac 1i-ln(2n+1)right) - left(sum_limitsi=1^n frac1i-ln(n+1)right)+lnleft(frac2n+1n+1right)\
        &to c-c+ln(2)=ln(2).
        endalign$$

        Finally note that
        $$sum_limitsi=1^2n+1 frac(-1)^i+1i
        =sum_limitsi=1^2n frac(-1)^i+1i+
        frac12n+1to ln(2)+0=ln(2).$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 6 at 16:56

























        answered Apr 6 at 15:42









        Robert ZRobert Z

        101k1072145




        101k1072145



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177120%2fproving-this-complicated-limit%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

            WordPress Information needed

            Hidroelektrana Sadržaj Povijest | Podjela hidroelektrana | Snaga dobivena u hidroelektranama | Dijelovi hidroelektrane | Uloga hidroelektrana u suvremenom svijetu | Prednosti hidroelektrana | Nedostaci hidroelektrana | Države s najvećom proizvodnjom hidro-električne energije | Deset najvećih hidroelektrana u svijetu | Hidroelektrane u Hrvatskoj | Izvori | Poveznice | Vanjske poveznice | Navigacijski izbornikTechnical Report, Version 2Zajedničkom poslužiteljuHidroelektranaHEP Proizvodnja d.o.o. - Hidroelektrane u Hrvatskoj