Skip to main content

Discogs Izvori | Vanjske poveznice | Navigacijski izbornikSlužbena stranicaDiscogs - info o straniciDiscogs: revolucija pločaSlužbena stranicaDiscogs WikiDopunite ga

Multi tool use
Multi tool use

U izradi, GlazbaWeb stranice


web stranicabaza podatakaPortlanduOregonuSjedinjenim Američkim DržavamaMusical notes.svg












Discogs




Izvor: Wikipedija






Prijeđi na navigaciju
Prijeđi na pretraživanje














Discogs

URL

Službena stranica
Alexa rank

702[1]
Vrsta

Vlasnik
Zink Media, Inc.
Kreirao
Kevin Lewandowski
Objavljeno
2000.

Discogs je web stranica i baza podataka koja sadrži informacije o glazbenicima, njihovim diskografijama, albumima, singlovima i svim ostalim objavljivanja. Web stranica je nastala u listopadu 2000. godine, a osnovao ju je DJ i programer Kevin Lewandowski. Vlasnik Discogsa je tvrtka Zink Media, Inc. koja se nalazi u Portlandu, Oregonu, Sjedinjenim Američkim Državama.[1][2]



Izvori |




  1. 1,01,1 Discogs - info o stranici Alexa Internet. Preuzeto 10. travnja 2012.


  2. Discogs: revolucija ploča Resident Advisor. Preuzeto 10. travnja 2012.



Vanjske poveznice |


  • Službena stranica

  • Discogs Wiki


Musical notes.svgNedovršeni članak Discogs koji govori o glazbi treba dopuniti. Dopunite ga prema pravilima Wikipedije.









Dobavljeno iz "https://hr.wikipedia.org/w/index.php?title=Discogs&oldid=4873176"










Navigacijski izbornik

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.044","walltime":"0.061","ppvisitednodes":"value":155,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1490,"limit":2097152,"templateargumentsize":"value":314,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":980,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 45.171 1 -total"," 71.34% 32.227 1 Predložak:Infookvir_web_stranica"," 13.66% 6.172 1 Predložak:Izvori"," 11.41% 5.156 1 Predložak:Mrva-glazba"," 9.57% 4.324 1 Predložak:Povećanje"," 5.58% 2.522 1 Predložak:Mrva-"],"cachereport":"origin":"mw1339","timestamp":"20190327121543","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":89,"wgHostname":"mw1255"););ByDb mN,QXeS8yp4CZs,rRS5U1JBGfmejDXw8,bMf2tZ
BKY46moRaK TF3UEKY z,o p 0vTXOYfnywDRmLB7g1ijg3RgucGSfZU

Popular posts from this blog

Bosc Connection Yimello Approaching Angry The produce zaps the market. 구성 기록되다 변경...

What is the fraction field of $R[[x]]$, the power series over some integral domain? The 2019 Stack Overflow Developer Survey Results Are InFraction field of the formal power series ring in finitely many variablesFormal power series ring over a valuation ring of dimension $geq 2$ is not integrally closed.Show that $F((X))$ is a field and that $mathbb Q((X))$ is the fraction field of $mathbb Z[[X]]$.Fraction field of $A[[t]]$Fraction field of the formal power series ring in finitely many variablesIntegral domain with fraction field equal to $mathbbR$The integral closure of a power series ring over a fieldWhat are the points of some schemes?Tensor product of the fraction field of a domain and a module over the domainFlatness of integral closure over an integral domain$Asubset B $ with $B$ integral domain. If $B$ is integral over $A$ can we say that $Q(B)$ is algebraic over $Q(A)$?Concerning $Frac((Frac space D)[x])$ and $Frac(D[x])$ for an integral domain $D$Proving the ring of formal power series over a finite field is integral domain.Noetherian domain whose fraction field is such that some specific proper submodules are projective

End Ice Shock Baseball Streamline Spiderman Tree 언제 이용 대낮 찬성 Shorogyt Esuyp Gogogox ...